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Abstract

Measurement of nuclear-to-cytoplasm

(N:C) ratios plays an important role

in detection of atypical and tumor

cells. Yet, current clinical methods

rely heavily on immunofluroescent

staining and manual reading. To

achieve the goal of rapid and label-

free cell classification, realistic optical cell models (OCMs) have been developed

for simulation of diffraction imaging by single cells. A total of 1892 OCMs were

obtained with varied nuclear volumes and orientations to calculate cross-polarized

diffraction image (p-DI) pairs divided into three nuclear size groups of OCMS,

OCMO and OCML based on three prostate cell structures. Binary classifications

were conducted among the three groups with image parameters extracted by the

algorithm of gray-level co-occurrence matrix. The averaged accuracy of support

vector machine (SVM) classifier on test dataset of p-DI was found to be 98.8% and

97.5% respectively for binary classifications of OCMS vs OCMO and OCMO vs

OCML for the prostate cancer cell structure. The values remain about the same at

98.9% and 97.8% for the smaller prostate normal cell structures. The robust perfor-

mance of SVM over clustering classifiers suggests that the high-order correlations

of diffraction patterns are potentially useful for label-free detection of single cells

with large N:C ratios.
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1 | INTRODUCTION

It is widely recognized that nuclear size change in terms of
nuclear-to-cytoplasm (N:C) ratio offers a powerful cue for
cancer diagnosis [1–5]. Histologic and immunofluorescent

microscopy remain the tools of choice to examine nuclear
morphology in details. Despite recent advances in micros-
copy technology and machine learning, these imaging
modalities still require staining, time-consuming acquisi-
tion and reading by trained specialists for decisive inter-
pretation [5]. Various label-free methods of cellular
imaging attract intensive research efforts for their practicalJing Liu and Yaohui Xu contributed equally to this study.
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benefits of little disturbance to imaged cells and much
reduced preparation labors. Among these, imaging with
coherent light scattered by cells stands out for strong sig-
nals and ability to profile internal structures by the 3D dis-
tribution of refractive index (RI) [6–12]. As we have
discussed previously [13], 3D reconstruction of RI distribu-
tion consists of interferogram or diffraction image acquisi-
tion, error-prone phase unwrapping and computationally
expensive tomographic reconstruction. Accomplishment
of these steps is very challenging, which needs modeling
nucleated cells with numerous and highly heterogeneous
intracellular organelles of substantially irregular shapes.
Discussion of contradictory results on the differences
between RI values of cytoplasm and nucleus provided an
illustrating example [9, 10, 14].

We have developed a single-shot method of polariza-
tion diffraction imaging flow cytometry (p-DIFC) for
rapid assay of biological cells [15–19]. The p-DIFC
method acquires one pair of cross-polarized diffraction
images (p-DI) per cell by splitting the scattered light into
s- and p-polarized components. Instead of RI recon-
struction, the purpose of p-DI acquisition and analysis is
for cell assay and classification by extraction of embed-
ded diffraction pattern features. It has been shown
experimentally that p-DI data contain rich information
related to the cellular structure, and machine learning
of embedded patterns allow accurate and rapid classifi-
cation of cells in different prototypes [18, 20–25]. Exten-
sion of p-DIFC or other methods to the clinically
important problems of nuclear size change detection,
however, remains very difficult since comparisons have
to be among cells of similar non-nuclear organelles. An
effective and practical approach is to accurately simu-
late diffraction imaging of single cells with realistic opti-
cal cell models (OCMs) for calculations of p-DI pairs
comparable to the measured ones. We have developed a
set of tools to model single cells and simulate the dif-
fraction imaging process [26, 27]. An OCM is first
reconstructed from a stack of confocal images with large
organelles of nucleus, mitochondria and cytoplasm
membrane stained with fluorescent dyes [28–30]. Then
the fluorescent intensities imaged from the stained
organelles are used to derive RI values for subsequent
simulations of light scattering and objective based imag-
ing. With this method, we have investigated the depen-
dence of diffraction patterns embedded in p-DI data on
the 3D RI distributions of different prostate cells [13].
Compared to OCMs built by mixed spheres and ellip-
soids [31–33], calculations of p-DI pairs with realistic
OCMs provide an accurate means to quantitatively cor-
relate the complex morphology of a cell and the charac-
teristic diffraction patterns that can be quantified for
classification.

In this report, we present a study on cell modeling
and comparison of machine learning algorithms on clas-
sification of cells with different nuclear sizes using realis-
tic OCMs built from confocal image stacks. A gray-level
co-occurrence matrix (GLCM) algorithm has been
selected to quantify textures of the calculated p-DIs [23,
24, 34]. We show that the supervised algorithm of sup-
port vector machine (SVM) performs well on binary cell
classifications among three OCM groups of different
nuclear sizes. In contrast, the unsupervised algorithms by
clustering in the GLCM parameter space perform poorly
that include hierarchical clustering, Gaussian mixture
model (GMM) and k-means methods. Results of confu-
sion matrix and scatter plot analysis are also presented to
demonstrate the clear advantages of the SVM method for
solving highly nonlinear and non-Gaussian type of classi-
fication problems in the GLCM parameter space.

2 | METHODS

2.1 | Confocal imaging and optical
modeling of prostate cells

Confocal fluorescent image stacks were acquired from
prostate cells of human prostate cancer cell line of PC3
(CRL-1435, ATCC) and human prostate normal epithelial
cell type of PCS (PCS440010, ATCC). After the cells
reached the logarithmic phase of growth in culture
medium, they were detached from plate by trypsin and
doubly stained by Syto-61 (S11343, ThermoFisher) for
nucleus and MitoTracker Orange (M-7510, ThermoFisher)
for mitochondria, which were chosen for their important
roles on light scattering by cells [35]. Image stacks were
acquired with a laser scanning confocal microscope (LSM
510, Zeiss) using a 63× water-immersion objective of 1.2 in
NA and a 4× digital zoom. The pixel intensity of each fluo-
rescence image slice was recorded in red and green chan-
nels, respectively, as Fr for Syto-61 and Fg for Mito-Tracker.
Reconstruction was performed by an in-house developed
code using the MATLAB platform (2019a, MathWorks) to
output organelle type identifier and the fluorescence inten-
sities of each voxel. The nuclear (or mitochondrial) voxels
carry the Fr (or Fg) values only while the cytoplasm voxels
hold both intensities due to small cytoplasmic concentra-
tions of target molecules. We selected three cell structures
for this study as PC3-a, PCS-a and PCS-b with the PC3 cell
significantly larger than the PCS cells [22].

The OCMs for this study are based on fluorescence
intensity stored in the 3D voxel array reconstructed from
a confocal image stack to determine the intracellular RI
distribution given by nη(r) for voxels of organelle type η
at r. We set the RI values by real numbers for all
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intracellular organelles since the prostate cells absorb lit-
tle light at the wavelength of λ = 532 nm for p-DIFC
measurement. It was further assumed that the RI incre-
ments of an organelle from a baseline level of nc0 is domi-
nated by water and linearly proportional to the dry mass
or number of molecules targeted by fluorescent stains.
The following equation has been employed because of
the linear relation between fluorescent intensity Fr and/
or Fg and dry mass of target molecules

nη rð Þ=nc0 + brFr rð Þ+ bgFg rð Þ 8r∈Ωη ð1Þ

In Equation (1) we designate nc0 as the baseline RI of
aqueous component in organelles such as cytosol in cyto-
plasm, br or bg as the specific RI increment coefficients
by the two fluorescent stain concentrations per voxel and
Ωη as the set of voxels with η as the organelle type index.
One can easyly show by Equation (1) that br is related to
nn,av as the averaged RI value of nuclear voxels given by

br =
nn,av−nc0

Frn,av
, ð2Þ

while bg can be expressed in term of nm,av as the average
RI value of mitochondrial voxels by

bg =
nm,av−nc0
Fgm,av

, ð3Þ

where Frn,av is the averaged value of Syto-61 fluorescence
intensity Fr saved in red channel for all nuclear voxels
and Fgm,av is that of MitoTracker Orange Fg saved in
green channel for all mitochondrial voxels. With only
three adjustable parameters of nc0, nn,av and nm,av, the
above OCM equations provide a practical and objective
approach to model the optical response of “molecular
composition” using a realistic cell structure. To further
improve the OCM defined above, small spheres with
Gaussian distributions of RI and radius were inserted in
cytoplasm to simulate the effect of lysosomes in light
scattering by prostate cells [7]. The volume ratio of lyso-
somes to cell in the OCMs developed here was set to 1%
with mean and SD values of radius given by 0.2 and
0.08 μm, and those of RI are denoted as nl,av and Δnl,av.

We have recently applied the GLCM algorithm to
quantify the diffraction patterns embedded in the p-DI
pairs calculated by OCMs of different values for nc0, nn,av
and nm,av. It has been found that the shape irregularity
and RI heterogeneity in the organelles play very significant
roles in the diffraction patterns in comparison to the aver-
age RI values of the organelles [13]. Consequently, we pre-
sent results here with only one set of nc0, nn,av, nm,av and

nl,av for all OCMs selected from simulation data calculated
with different set of RI values.

The cell structures of PC3-a, PCS-a and PCS-b were
selected from the reconstruction 3D voxel arrays to
obtain OCMs for this study. The nucleus of each cell
structure was varied by dilation or erosion of integer
number of nuclear membrane voxel layers to modify
OCMs. We define a nuclear volume variation ratio rnv to
characterize modified OCMs against the one built with
the original cell structure. All OCMs of either PC3-a or
PCS-a combined with PCS-b structures were divided into
three nuclear size groups. The OCMS group consists of
those with rnv ranging from 39% to 61%, the OCMO group
from 89% to 111% and the OCML group from 139% to
161%. For the PCS-b cell structure, the upper bounds of
OCMO and OCML groups were reduced to 109% and
159% to shorten simulation time. Each group has 5 to 11
OCMs of different rnv values with variable stepsizes of
2%, 3% or 4% so that 50%, 100% and 150% is at the middle
of range. Furthermore, the orientation of each OCM is
characterized by (α, β, γ) as the Euler angles in the coor-
dinate system defined by the incident light and imaging
directions as shown in Figure 1A. A total of 22 orienta-
tions were applied for calculation of p-DI pairs to assess
the effect of orientation on diffraction patterns of p-DI
data and classification. Based on our previous p-DIFC
studies, orientations of flowing cells in are not random-
ized since different cell types of high morphological simi-
larity can be accurately classified by the measured p-DI
data [18, 20, 22, 25]. One can therefore conclude that the
cells are rather aligned around certain preferred direc-
tion. For this study we limited the orientation change by
variation of α only from 25.0� to 35.5� with a stepsize of
0.5�. Table 1 lists the morphology parameters of the two
cell structures used in this study and the total number of
OCMs for each of the three size groups.

2.2 | Configuration of diffraction
imaging and simulation for calculated p-DI
pairs

For p-DI measurement, suspension samples of detached
prostate cells were prepared in a concentration of about
2 × 106 cells/mL and injected into the core fluid stream
of a p-DIFC system [15–18, 22]. A continuous-wave and
linear polarized laser beam of λ = 532 nm in wavelength
is propagated along the z-axis and focused on the core
fluid that carries the cell suspension through the focal
spot around 30 μm. A flowing cell scatters the incident
coherent light as it passes through the focus due to RI
mismatch between cell and core fluid as host medium.
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Collection of the scattered light from the glass flow
chamber is achieved with an imaging unit along the side
directions within a cone angle as shown in Figure 1B.
The imaging unit consists of an infinity-corrected ×50
objective of 0.55 in NA (378-805-3, Mitutoyo), a polariz-
ing beam splitter for separating scattering light into s-
and p-polarized branches for p-DI acquisition with one
CCD camera (LM075, Lumenera) per branch. The unit,
with camera sensor fixed to the focal plane of tube lens,
can be translated away from the focused position by Δx
toward the flow chamber (Δx > 0) to increase the

contrast and vary collection angular cone [16, 26]. Acqui-
sition and simulation of p-DI data were performed with
Δx set to 150 μm for PC3 and PCS cells.

To simulate diffraction imaging, we first employed an
open-source code of ADDA based on the discrete-dipole
approximation to determine the angular distribution of
scattered light [36]. Each OCM listed in Table 1 was used
as the input data for the ADDA code with incident light
wavelength set to λ = 532 nm. The simulations were per-
formed with ratios of wavelength to voxel size or dipole-
per-wavelength values ranging from 5 to 10 and output

FIGURE 1 A, The imaging configuration of one polarized branch for p-DI acquisition and calculation with the green lines representing

the incident and scattered light of λ = 532 nm; FC, flow chamber; TL, tube lens; CCD, imaging sensor; Γim, imaging plane (blue line); B,

magnified view of the scattering configuration and coordinate axes (red lines) with incident beam along the z-axis; Γin: input plane defined
inside the flow chamber (blue line); C, one calculated p-DI pair by an OCM of PC3 cell with the polarizations of incident beam and scattered

light marked; D, one measured p-DI pair of a PC3 cell. OCM, optical cell model

TABLE 1 Morphology parameters of three prostate cells and number of OCMsa

Cell
ID

Vc

(μm3)
SVrc
(μm−1)

ERc

(μm)
<Rc>
(μm)

Vrnc
(%)

SVrn
(μm−1)

Vrmc

(%)
SVrm
(μm−1)

# of OCMsa

OCMS OCMO OCML

PC3-a 2250 0.500 8.13 8.35 37.0 0.716 7.66 5.86 11 × 22 11 × 22 11 × 22

PCS-
a

1118 0.614 6.44 6.56 30.1 0.964 4.71 6.42 11 × 22 11 × 22 11 × 22

PCS-
b

1622 0.607 7.29 7.62 24.6 0.957 28.1 3.93 10 × 22 5 × 22 5 × 22

Abbreviations: OCMs, optical cell models; <Rc>, average distance of cell membrane voxels to centroid; ERc, equivalent radius of cell; SVrc
(SVrn or SVrm), surface-to-volume ratio of cell (nucleus or mitochondrion); Vc, cell volume; Vrnc (Vrm), volume ratio of
nucleus(mitochondrion)-to-cell.
aTotal number of OCMs in each group are given by the number of OCMs of different nuclear sizes multiplied by 22 as the number of
orientations.
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data in the forms of angle-resolved 4 × 4 Mueller matri-
ces. The imaging configuration shown in Figure 1 is
implemented in a ray-tracing optical design software
(Zemax, 2009) to trace scattered light rays. The ray trac-
ing starts from the virtual input plane Γin defined in the
flow chamber with a distance of 150 μm from the scat-
terer located at the origin. It proceeds through the host
medium of water, chamber glass, air and imaging unit to
the imaging plane Γim as depicted in Figure 1A,B. The
calculated p-DI pairs were obtained after completion of
ray tracing for all scattering angles within the collection
cone of the objective. Different combinations of incident
beam and scattered light polarizations for each p-DI pair
were determined with linear combinations of the Mueller
matrix elements produced by ADDA. More details of dif-
fraction imaging simulation and validation against mea-
sured data can be found elsewhere [13, 24, 27, 37].

2.3 | Image characterization by GLCM
parameters and classification

The second-order statistical algorithm of GLCM has been
applied to characterize each input image of 8-bit pixel
intensity [34]. The algorithm outputs a matrix of rank
256 (=28) has its elements defined as the relative fre-
quency of paired pixels having their intensities given by
the row and column numbers of the elements. For this
study, the pixel distance in each pair was set to 1 and four
matrices were obtained for the directions of pixel pairs
given by 0�, 45�, 90� and 135�. The input image textures
are quantified by 15 GLCM parameters calculated from
each matrix and the averaged GLCM parameters over the
four directional matrices were used for subsequent classi-
fication. Each calculated p-DI pair of 16-bit pixels was
normalized into images of 8-bit pixels to determine a
total of 32 GLCM parameters with definitions and sym-
bols of GLCM parameters given in the Support
Information.

We have investigated unsupervised and supervised
classifiers for binary classification of p-DI pairs calculated
with the OCMs of two nuclear size groups for each of the
PC3 and PCS cell structures. Different clustering algo-
rithms of k-means, hierarchical and GMM have been
applied as the unsupervised classifiers [38, 39]. It has
been found that the best performing clustering classifier
is given by combining the hierarchical with GMM clus-
tering algorithms for high stability [37]. The combined
clustering classifier is denoted in this report as hGMM,
which starts hierarchical clustering by assuming each p-
DI pair being a cluster of its own in the GLCM parameter
space. It then iterates by linking two clusters of the
shortest distance at a time and iteration ends when the

total number of clusters is reduced to k = 2. The output is
imported into the GMM algorithm to obtain a Gaussian
probability density function (pdf) for each of the two
clusters in the parameter space. Classification is opti-
mized by maximizing iteratively a likelihood function L
defined as the logarithmic sum of pdf's over the p-DI data
represented by the GLCM parameters assigned to differ-
ent clusters. Each iteration varies the cluster assignment
and pdf parameters to increase L until its value stabilizes
[40]. Afterwards, each cluster, C1 or C2, was assigned to
one OCM size group as defined in Table 1 that yields
highest classification accuracy AhGMM. The standard defi-
nition of classification accuracy, AhGMM or ASVM, is
adopted to measure the performance of either hGMM or
SVM classifiers that is given by the number ratio of cor-
rectly identified p-DI pairs to the total number of p-DI
pairs.

Different from unsupervised methods of clustering,
an SVM classifier requires training to learn image pat-
terns characterized by the GLCM parameters in our case.
The algorithm maps the GLCM parameters into a feature
space defined by a kernel function and solve a quadratic
optimization problem using the training data. The solu-
tion yields an optimized kernel function and a decision
function which can be applied to the test data to deter-
mine ASVM,tes. We employed the SVM tool provided by
Matlab for this study and both the hGMM code and inter-
face code to the SVM tool were developed in the same
platform.

3 | RESULTS

3.1 | Confocal imaging of cell
morphology and OCMs of varied nuclear
sizes

Confocal image stacks were acquired from PC3 and PCS
cells with a stepsize of 0.5 μm along the direction perpen-
dicular to the object plane of the microscope objective.
Each image slice has 512 × 512 pixels which was seg-
mented into three sets of nucleus, mitochondria and cyto-
plasm in the red and green color channels recording the
two fluorescent intensities. Interpolated slices were added
during reconstruction to obtain a 3D array of nearly cubic
voxels for each imaged cell [29, 30]. With the confocal
image stacks of PC3-a, PCS-a and PCS-b selected for
reconstruction, simulations of diffraction imaging process
were performed with a total of 1892 OCMs as listed in
Table 1 with 726 for the PC3 (PC3-a) and 1166 for the
PCS (PCS-a and PCS-b) structures. Each OCM is specified
by its cell ID, nuclear volume variation ratio rnv and ori-
entation angles (α, β, γ). Light scattering by a cell was

LIU ET AL. 5 of 13



modeled by assuming an OCM placed in the host
medium of water with RI given by nh = 1.336 and a line-
arly polarized incident beam of three polarization direc-
tions and λ = 532 nm. We have investigated different
values of averaged RI for nuclear and mitochondrial
voxels of OCMs as defined in Equations (2) and (3) from
1.39 to 1.55 and found GLCM parameters of the calcu-
lated p-DI data exhibiting very weak dependence on aver-
aged RI values [13]. Based on these results, the input
parameters for all OCMs in this study were set to
nc0 = 1.345, nn,av = 1.442, nm,av = 1.450, nl,av = 1.440 and
Δnl,av = 0.02 [7–11]. Simulations with another set of
higher RI values of nc0 = 1.361, nn,av = 1.486, nm,av = 1.500,
n

l,av
= 1.480 and Δnl,av = 0.02 have been carried out and

the above finding was confirmed with similar classification
accuracies.

Figure 2 compares a center confocal image slice
acquired from the PC3-a structure and corresponding
false-color center image slices of OCMs of different rnv
values. Similar comparisons are shown in Figure 3 for
the PCS-a and PCS-b structures. For OCMs of rnv < 100%,
the RI values of selected nuclear voxels near the mem-
brane were replaced by those of randomly chosen cyto-
plasmic voxels calculated by Equation (1) for the nuclear

voxels. For OCMs of rnv > 100%, the RI values of selected
cytoplasmic or mitochondrial voxels were replaced by
those of randomly chosen nuclear voxels calculated by
Equation (1). These images show clearly that the use of
OCM to investigate the effect of different nucleus vol-
umes on p-DI patterns has the unique advantage of keep-
ing other organelles unchanged or minimally changed
which is difficult, if not impossible, to achieve experi-
mentally. Since PC3 cells on average are much larger in
both cellular and nuclear volumes than the PCS cells
[22], we performed binary classification of p-DI data
among the three OCM groups of different nuclear sizes
built with PC3 and PCS cell structures separately. The
OCM groups of the PCS structures consist of those based
on the PCS-a and PCS-b cells shown in Figure 3.

3.2 | Calculations of p-DI data with
OCMs of different nuclear sizes and
orientations

Calculations of p-DI pairs were performed with all OCMs
listed in Table 1. Following our previous experimental
and numerical investigations, three cases of linear

FIGURE 2 One center slice of: A, the confocal image stack acquired from the PC3-a cell with slice number marked; corresponding

center slices of different OCMs in the group of B, OCMS; C, OCMO; D, OCML. Different voxel colors are used in OCM slices from B to D to

mark organelles with brightness indicating RI values; nucleus: red, cytoplasm: blue, mitochondria: green, lysosome: white. Each OCM

center slice is marked with rnv values for nuclear volume variation ratio and white lines indicate cytoplasmic and nuclear membranes.

Bar = 5 μm. OCM, optical cell model
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polarization direction were considered for the incident
laser beam and denoted as ver for along the y-axis, hor
for along the x-axis and 45� for between ver and hor in
the x-y plane as depicted in Figure 1A. A total of 5676
p-DI pairs were calculated though light scattering

modeling with the ADDA code followed by image simu-
lation with the Matlab and Zemax based ray-tracing
code with the off-focus distance Δx = 150 μm. The
ADDA simulations were performed on the computing
cluster of the Institute for Advanced Optics, which took

FIGURE 3 Similar to Figure 2 for the two PCS cells and corresponding OCMs in three groups with A to D for the PCS-a cell structure

and E to H for the PCS-b cell structure. Bar = 5 μm. OCM, optical cell model
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about 1 to 4 hours to complete calculation of the angle-
resolved Mueller matrices for one OCM of the PC3-a
structure on one CPU (Xeon E5-2650V4, Intel). For the
smaller PCS-a and PCS-b structures, p-DI calculations took
less time with 10 to 40 minutes for one OCM. In compari-
son, projection and ray-tracing of the Mueller matrix ele-
ments can complete in about 10 minutes for three pairs of
p-DI of different incident beam polarizations on one OCM
with one CPU (i5-9400, Intel). Figures 4 and 5 show the
calculated pairs of p-DI for the PC3-a and PCS-a plus PCS-
b structures.

For each nuclear size group shown in the two figures,
two p-DI pairs are included for visual comparison of pat-
tern differences by two OCMs of same rnv but different α
values by 10.5�. It can be clearly seen that the orienta-
tional variations of OCM lead to pattern changes to a cer-
tain extent as a result of the nonspherical and highly
heterogeneous intracellular organelles. We observe fur-
ther a trend of speckle size decrease in p-DIs as the rnv
value increases that reflects the fundamental relation
between scatterer size and angular size of diffraction
speckles based on, for example, the Mie theory for
spheres [24, 37]. The trend is more visible in Figure 5 for
the cases of PCS-a and PCS-b cell structures of small
volumes.

3.3 | Classification among different
groups of nuclear size

The calculated p-DI data were divided into three groups
of OCMS, OCMO and OCML for binary classification
among the three groups of the same incident beam polar-
ization and cell structure of PC3 or PCS. Each p-DI pair
in a group was processed by the GLCM algorithm to con-
vert each image in the pair into 16 parameters as defined

in the SI file with 15 for characterizing image texture and
1 as the mean pixel intensity. Thus, each p-DI pair was
characterized by 32 GLCM parameters for subsequent
classification. The GLCM parameters of p-DI data were
pooled according to the paired OCM groups for binary
classification based on the same cell structure and inci-
dent beam polarization. For example, the GLCM parame-
ters of all p-DI data in the OCMS group were combined
with those in OCMO group for one pool and with those
in OCML for another pool. Then the values of each
GLCM parameter for all p-DI pairs in a pool were nor-
malized by the same maximum and minimum values of
that parameter in the pool for binary classification by
either classifier of hGMM or SVM. The unsupervised and
supervised classification were carried out on a computer
with one CPU (i5-9400, Intel) and the time to complete
an hGMM classification was about 3 seconds while SVM
training and test with a selected kernel function took
about 20 and 2 seconds respectively.

Table 2 lists the values of Ntot as the total number of
p-DI pairs in each pool for binary classifications by the
hGMM method among the three OCM groups of different
rnv for the same cell structure and incident beam polari-
zation. The numbers of training and test datasets for
SVM classification are recorded together with Ntot. It also
includes the values of classification accuracy AhGMM

which show poor performance of the clustering method
with AhGMM < 80%. We have also investigated hGMM
classification with different subsets of the 32 GLCM and
intensity parameters which yielded similarly low values
of AhGMM. Additional tests of the k-means clustering
algorithms have also been carried out which yielded poor
performance as well. To understand these results by the
clustering methods, we examined the distributions of p-
DI pairs in different pools by scatter plots in various sub-
spaces of GLCM parameters. Two examples are presented

FIGURE 4 Normalized p-DI pairs calculated with PC3-a structure and different values of rnv and (α, β, γ) as orientation angles: OCMs

(top row); OCMO (middle row); OCML (bottom row). Each pair is marked with polarization of the scattered light and values of rnv and (α, β, γ).

The incident beam polarization was set to ver. OCM, optical cell model
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in Figure 6 to show unambiguously that p-DI pairs in the
same pool are not linearly separable in the GLCM param-
eter space. It becomes obvious from these plots that the
classification problems encountered here are highly
nonlinear and the distributions of p-DI data are non-
Gaussian. These characteristics lead to the poor perfor-
mance of hGMM and other clustering methods.

To improve performance of binary classification, we
conducted SVM based supervised machine learning of
diffraction patterns by dividing the p-DI data in each pool
randomly into training and test datasets for each combi-
nation of cell structures and incident beam polarization
as listed in Table 1. A scheme of 5-fold cross-validation
was employed to optimize SVM classifiers by the training
dataset with a selected kernel function [22]. The averaged
accuracy of binary classifications performed on the train-
ing dataset by the 5-fold cross-validation and that of the
test dataset are presented respectively as ASVM,tra and
ASVM,tes in Table 3. Comparison of the accuracy values in
Tables 2 and 3 demonstrate clearly that SVM outperforms
clustering algorithms significantly in classifying cells
among the three nuclear size groups. The confusion
matrices in Figure 7 presents additional details on perfor-
mance of the two classifiers. It is interesting to note that
the values of classification accuracy stay about the same
for both cell structures or classifiers despite the much

larger differences in rnv values between OCMS and OCML

than those of the other two pools.

4 | DISCUSSION

Clinical research signifies the utility of nuclear size esti-
mation or measurement in terms of N:C ratio [2]. Figure 8
presents a cytology smear image of fine-needle aspirate
from a patient with lung adenocarcinoma, which shows
clearly tumor cells of large N:C ratios. Consequently,
development of accurate and automated approaches for
future technical development should have wide implica-
tions in diagnosis of atypia and malignancy. Compared to
existing methods by conventional microscopy, single-shot
diffraction imaging by coherent light may offer competi-
tive advantages to probe without labeling cells for classifi-
cation. A significant challenge is to develop tools for
survey and evaluation of correlations between the
nuclear size change and the diffraction image features
that can be measured and extracted rapidly. By classify-
ing p-DI pairs divided into three nuclear size groups
using OCM tools, we have shown that the SVM classifiers
perform well over clustering methods on distinguishing
cells of different nuclear sizes and the potential of p-
DIFC method for such applications. For the larger PC3-a

FIGURE 5 Similar to Figure 4 with: A, PCS-a structure; B, PCS-b structure
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structure, the averaged value and standard deviation of
ASVM for the test dataset over the 3 incident beam polari-
zations is 98.8% ± 0.7% and 97.5% ± 2.3% respectively for
the binary classifications of OCMS vs OCMO groups and
OCMO vs OCML groups. For the smaller PCS structure
with the PCS-a and PCS-b cells, the corresponding ASVM

values remain about the same at 98.9% ± 0.5% and 97.8%
± 0.6% respectively.

The robust performance of the SVM method can be
attributed to its ability for effectively solving nonlinear
classification problems in the feature space instead of the
GLCM parameter space. By training a kernel function to

optimize mapping, the final feature space enables linear
separability of the input GLCM data and the classifier is
evaluated further with the held-out test data. The signifi-
cant differences between the two sets of confusion matri-
ces for hGMM and SVM in Figure 7 provide strong
evidences for using feature space to classify cells of differ-
ent nuclear sizes with GLCM parameters of non-Gauss-
ian distribution. Since SVM can be represented as a
shallow neural network of single hidden layer [41], it
becomes apparent that the features extracted by SVM
form a parameter space defined by the correlations
among the GLCM parameters. Since GLCM characterizes

TABLE 2 Datasets and classification accuracy by hGMM method

Cell structure pol Binary groupsa Ntot Ntra Ntes

AhGMM (%)

S vs O O vs L S vs L

PC3-a ver All 2 × 242 2 × 170 2 × 72 66.1 58.1 55.0

hor All 2 × 242 2 × 170 2 × 72 51.9 70.3 76.2

45� All 2 × 242 2 × 170 2 × 72 63.6 71.9 77.5

PCS-a & PCS-b ver S vs O or L 462 + 352 2 × 285 177 + 67 46.3 57.9

O vs L 2 × 352 2 × 285 2 × 67 53.6

hor S vs O or L 462 + 352 2 × 285 177 + 67 63.3 58.6

O vs L 2 × 352 2 × 285 2 × 67 50.9

45� S vs O or L 462 + 352 2 × 285 177 + 67 56.5 52.1

O vs L 2 × 352 2 × 285 2 × 67 65.1

Abbreviations: Ntes, number of p-DI pairs in test dataset; Ntot, total number of p-DI pairs of a pool for binary classification; Ntra, number of p-
DI pairs in training dataset; pol, incident beam polarization.
aFor binary classification of OCM groups: S = OCMS, O = OCMO, L = OCML.

FIGURE 6 Scattering plots of s-polarized images calculated with PC3-a structure and incident beam polarization set to ver for the

pools of OCMS vs OCMO (left) and of OCMS vs OCML (right) in the subspace of GLCM parameters by ASM (angular second moment), CON

(contrast) and VAR (variance). Note that the same data set of OCMS appears differently in the two plots due to the pool dependence of

GLCM parameter normalization. OCM, optical cell model. GLCM, gray-level co-occurrence matrix
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the second-order correlations of the input images, our
results thus demonstrate the strong ability of GLCM com-
bined with SVM to solve the classification problem here.
These data further reveal the capacity of the p-DIFC
method to extract high-order correlations of the diffrac-
tion patterns embedded in p-DI pairs. These conclusions
are consistent with those of our recent study on classifica-
tion of five cell types by a convolutional neural network
on measured p-DI data with a minimum of three con-
volutional layers [25]. Taken together, the presented
results suggest that the p-DIFC method may provide in
the future an automated approach to classify atypical cells
of large nuclear size against the normal ones by extraction
of high-order correlations from p-DI data. Research is

underway to apply the tools developed here for detection
of cells with large N:C ratios in human pleural effusion
samples by the measured and calculated p-DI data.

5 | CONCLUSION

We have developed useful tools through this study to cal-
culate p-DI pairs using realistic OCMs of human prostate
cells and compare different algorithms for binary classifi-
cation. The OCMs have been developed to represent
nucleus, mitochondria, lysosomes and cytoplasm as intra-
cellular RI distributions for simulation of diffraction
imaging and calculation of p-DI pairs. With the GLCM

TABLE 3 Classification parameters and accuracy by SVM methoda

Cell structure pol

ASVM,tra; ASVM,tes (%) and KFb

S vs O KFs O vs L KFs S vs L KFs

PC3 (PC3-a) ver 100; 99.3 C, Q 99.7; 94.4 C 100; 100 C

hor 98.5; 97.9 C 98.2; 97.9 C 99.4; 98.6 C

45� 100; 99.3 C, Q, L, G 99.7; 100 Q 100; 99.3 C, Q, G

PCS (PCS-a &PCS-b) ver 98.4; 99.6 C 98.2; 97.0 C 98.9; 98.4 C

hor 98.9; 98.8 C 98.8; 98.5 C 98.2; 98.0 C

45� 99.5; 98.4 C 99.3; 97.8 C 97.7; 97.5 C, G

aThe number of p-DI pairs in the training and test datasets are in Table 2, pol = incident beam polarization, S = OCMS, O = OCMO,
L = OCML.
bThe kernel functions (KFs) used for the best classification accuracy of training (ASVM,tra) and test data (ASVM,tes): C, cubic; Q, quadratic; L,
linear; G, medium Gaussian; definitions of KFs are provided on the Mathworks website.

FIGURE 7 Confusion matrices

of binary classification of nuclear

size groups with incident beam

polarization set to ver and group

notation of S = OCMS, O = OCMO,

L = OCML: A and B, hGMM method

on all data; C and D, SVM method

on test datasets. Rows represent

ground truth and the blue squares

indicate zero elements. OCM, optical

cell model
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algorithm to characterize the second order of pixel inten-
sity in the p-DI data, we have shown that the SVM algo-
rithm outperforms various clustering methods by solving
the nonlinear classification problems in a feature space.
It was further demonstrated that the ability to extract
high-order correlation features from diffraction image
patterns is critical for SVM to achieve high classification
accuracies for the prostate cell structures and all three
polarization directions of the incident laser beam. These
results present a proof-of-concept for future development
of label-free methods to automate accurate assay of
nuclear size and conditions in biological cells.
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