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Development of an accurate and label-free method for single cell assay attracts intensive 

research efforts for its importance to cell biology research and clinical applications. Flow 

cytometry is one of the most widely used technologies for rapid assay of single cells but 

existing approaches provide very limited information on cell morphology and require the 

fluorescence staining. In this dissertation research, we focus our efforts on the quantitative 

analysis of cell morphology using confocal microscopy based three-dimensional (3D) 

reconstruction and the exploration of a new approach of flow cytometry through imaging of 

highly coherent scattered light. The goal of the dissertation research is to develop a new and 

morphology based approach for rapid cell assay and phenotyping with the polarization 

diffraction imaging flow cytometry (p-DIFC) platform through investigation of the 

structure-function relations at the cell level. To achieve this goal, cross-polarized diffraction 

image pairs have been acquired from single cells excited by a linearly polarized laser beam. 

Image texture and intensity parameters are extracted with a gray level co-occurrence matrix 

(GLCM) algorithm to obtain a set of image parameters to quantify the diffraction patterns. 



 

 

An automated cell classification method has been developed using a Support Vector Machine 

(SVM) algorithm in the feature space formed by the training data of the cross-polarized 

diffraction image pairs. We have investigated different types of human lymphocytes and 

prostate epithelial cells with the confocal imaging and p-DIFC measurements and conducted 

cell morphology and classification studies. The analysis of 3D morphology parameters 

among the six types of cells provides, for the first time, the ability to quantitatively evaluate 

the morphologic differences among these phenotypes and to gain insights on the morphology 

based classification. It has been further shown that the diffraction image parameters can be 

mapped into a high-dimensional feature space with the SVM algorithm to obtain the 

optimized model and yield accurate classifications between Jurkat T cells and Ramos B cells 

and between the normal and cancerous prostate epithelial cells. Based on these results we 

conclude that the p-DIFC method has significant potentials to be developed into a rapid and 

label-free method for cell assay and morphology based classification to discriminate cells of 

high similarity in their morphology.  
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CHAPTER 1  INTRODUCTION 

 Flow Cytometry (FCM) is a widely used method for rapid assay of single cells by 

measurement of the physical and chemical characteristics of the cells. With the FCM method, 

cellular components or organelles are labeled with fluorescent reagents which emit light 

signals at wavelengths longer than those of excitation. Both of the scattered and fluorescent 

light signals from the cells are measured in FCM in the form of pulsed signals [1], which are 

used to analyze and classify cells. The scattered light signals, including the forward scatter 

(FSC) signal and side scatter (SCC) signal, indicate the cell volume and degree of 

heterogeneity in intracellular distribution of the refractive index. The two light scatter signals 

provide useful information for cell assay according to their morphology but cannot yield 

sufficient details on the complex cellular morphology. As a result, multiple fluorescent 

probes or labels have to be used to obtain molecular information of the measured cells for 

various applications such as classifying subtypes of white blood cells for immunotherapy of 

cancers [2] and detection of circulating tumor cells in blood [3]. Furthermore, cells in 

different conditions undergo significant and characteristic changes in the structures of 

intracellular organelles such as cytoplasm and nucleus. Therefore, the investigations of 

cellular morphology with minimum or without extraneous interferences by fluorescent 

staining [4, 5] are highly desired. It is thus important to develop label-free and morphology 
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based cell assay approaches that are complementary to the existing FCM methods and useful 

for cell biology research and clinical development.  

   This dissertation research project focuses on the analysis of different cell types including 

human lymphocytes and epithelial cells using the methods of polarization diffraction imaging 

flow cytometry (p-DIFC) and confocal microscopy based three-dimensional (3D) 

morphology methods developed in the Biomedical Laser Laboratory. The long-term goal of 

the research project is to develop a new and morphology based approach for rapid cell assay 

and phenotyping using the p-DIFC platform by exploring the structure-function relation at the 

cell level. To achieve this goal, the existing p-DIFC system has been improved with in-house 

developed software on diffraction image acquisition, processing and extraction of feature 

parameters. Different types of primary and cultured cells have been investigated 

quantitatively on their 3D morphology to quantify the structural differences in major 

intracellular organelles of cytoplasm, nucleus, and mitochondria that play significant roles in 

the light scattering. The cross-polarized diffraction images have been acquired from the 

above cell samples with the improved p-DIFC system. We have applied the gray level 

co-occurrence matrix (GLCM) algorithm to quantify the diffraction patterns of the imaged 

cells in terms of the texture parameters extracted from the diffraction image data. Automated 

cell classification has been performed using a Support Vector Machine (SVM) algorithm in 

the parameter space formed by the diffraction image parameters.  

Through this dissertation study, we have investigated two types of primary prostate 

epithelial and cancer cell lines, the Jurkat T and Ramos B cancer cell lines and primary 
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lymphocytes extracted from human spleen tissues. The 3D morphology of these cell types 

have been quantified with 29 parameters for comparison and analysis of the statistical 

significance in their differences. The cross-polarized diffraction image data have been 

acquired and analyzed to examine the capability of the p-DFIC method for label-free cell 

assay and classification. The results of this study demonstrate the capabilities of p-DIFC 

method to rapidly measure and analyze the diffraction image data for accurate label-free 

classification of cells of high similarity in morphology.  

  This dissertation is organized into the following chapters. Chapter 2 provides the 

background information of light scattering by single biological cells, cell morphology, 

phenotyping, and the FCM methods. Chapter 3 presents the various algorithms employed for 

processing the acquired diffraction image data, analysis of diffraction image texture, and the 

machine learning tools for cell classification. Chapter 4 describes the experimental methods 

for cell extraction, preparation, confocal imaging measurement, and p-DIFC measurements. 

In Chapter 5 the result of 3D morphology and p-DIFC based classification studies are 

presented on different cell lines and primary cells. We discuss in Chapter 6 the significance 

of the dissertation study and directions for future research.  

 



 

 

 

CHAPTER 2  BACKGROUND 

  This chapter provides the background information on the theoretical and experimental 

methods to study single biological cells and cell morphology from the literature. In particular, 

we present a method comparison of the conventional flow cytometry and diffraction imaging 

flow cytometry which has been employed as a major experimental means in this dissertation 

study.  

 

2.1  Investigation of cell morphology 

  Biological cells were first discovered through the structural examination by Robert Hooke 

with a primitive microscope of low magnification more than three centuries ago [6] . Since 

then it has been well established that cells are the basic units of life whose functions are 

closely related to their structures. An organism can contain numerous and specialized types of 

cells that differ both in their structures or morphology and functions. These cells can be 

classified either by phenotyping through their morphology based structural analysis or 

genotyping. Genotyping is the process of determining differences in the genetic makeup or 

genotype [7] of concerned cells by examining their DNA and RNA sequences using various 

assays and comparing with other cells’ sequences. However, the identification of cell types 

through genotyping provides only molecular aspects of cell information, which 

fundamentally relates to the structural or morphologic aspect but not equivalent. Furthermore, 

genotyping requires analysis of DNA and RNA sequences and expression levels of proteins, 
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which can be time-consuming and difficult to be implemented at the single cell level. Unlike 

genotyping, phenotyping through morphology distinguishes cell types based on structural 

characteristics or traits to support specific cellular functions and/or developmental behaviors. 

Since morphological information cannot be extracted in general from the genotyping data, it 

is highly desired to develop rapid morphology based phenotyping tools that allow rapid and 

accurate extraction of the structural information of single cells on the basis of the 

well-recognized structure-function relations.  

 

2.2  Light scattering 

  Light scattering by single particles occurs as a result of the variations of refractive index 

from the host medium and within the particle. When a light beam in a form of 

electromagnetic (EM) waves strikes a particle, the excited molecules inside the particle can 

be seen as a phased array of many induced electric dipoles. If the incident light beam is 

highly coherent, the induced dipoles within the illuminated particle radiate EM waves of 

scattered light that are highly coherent as well. The spatial distribution of the scattered light 

in this case thus presents characteristic diffraction patterns as the results of coherent 

superposition of the highly coherent EM fields of scattered light by the induced molecular 

dipoles within the particle. The intensity of scattered light along a particular direction of s as 

the polar scattering and s as the azimuthal scattering angle can be measured by one or 

multiple imaging sensors in space, and can be simulated by solving the Maxwell equations 

with the intracellular distribution of refractive index n(r) with r as the position vector.  
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  The coherent distribution of light scatter is a direct consequence of superposition among 

the EM fields emitted by the induced molecular dipoles inside the illuminated particle. The 

characteristic patterns in space of the scattered light are thus highly correlated to the structure 

of n(r) of the scatter’s morphology. This correlation could thus provide a foundation to 

extract morphology information of the scatter and establish a rapid method of cell assay 

based on morphology through angle-resolved imaging of the scattered light. The 

measurement of the coherent distribution of scattered light with imaging sensors has been 

developed in our lab and is termed as diffraction imaging in this dissertation research. 

Compared with traditional non-coherent imaging approaches for the morphology 

measurement such as microscopy, diffraction imaging yields a new and different means to 

characterize morphology. As the new method, diffraction imaging of the scattered light 

allows probing of the 3D structure of the coherently illuminated particle or cell.  

  Biological cells are the typical form of the 3D particles that composed of cytoplasm and 

various organelles such as nucleus and mitochondria. They scatter light because of their 

heterogeneous distribution of the refractive index inside the cells that is different from the 

index of the host medium. We can find a wide range of values for refractive indices of cell 

components in the literature [8,9,10] as shown in Table 2-1. The range of cell membranes is 

totally different from the cytoplasm and the nucleus. The nucleus and the mitochondria are 

expected to be in the following ranges even though the exact values remain unknown for 

almost all cell types.  
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               Table 2-1 Possible refractive index range of cell components  

Cell Component Range of refractive 

index 

Cell membranes 1.46-1.54 

Cytoplasm 1.35-1.37 

Nucleus 1.38-1.41 

Mitochondria 1.38-1.41 

 

Elastically scattered light from a cell illuminated with a highly coherent laser beam 

presents characteristic and intriguing diffraction patterns in space as a result of the index 

heterogeneity and high coherence among the wave fields of the scattered light. The 

correlation between the spatial distribution of the coherent light scattered by a cell and the 

intracellular distribution of the refractive index shows the possibility for 3D morphology 

based analysis and phenotyping of single cells without fluorescent staining, which can 

provide a powerful tool for cell biology applications in many fields of the life science 

research.  

 

2.3  Flow cytometry 

  The study of single cells often requires measurements on a large number of cells to obtain 

statistically meaningful data and therefore FCM is the ideal candidate to measure a great 

amount of cells’ information in a high speed. FCM technology analyzes the physical and 

chemical characteristics of single particles such as biological cells in a fluid as they pass 

through the laser beam. The speed of light scatters and fluorescence detections is very fast 

with throughput reaching up to 10,000 cells/s. Components in cells are labeled fluorescently 
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and emit light signals at varying wavelengths after exciting by the laser. The detectors of 

FCM measure scattered and fluorescence light signals in the form of pulsed signals [1], 

which are then sorted by a multichannel analyzer, displaying histograms of the number of 

cells having a specific pulse height versus the values of the height. Main components of FCM 

include: a fluidic device, an optical system, and a data analysis system. A fluidic device 

converts a fast moving cell suspension into only one-cell wide. An optical system is 

composed of one or more laser beams for the excitation of the cells in the flow and detectors 

to acquire the scattered and fluorescence light signals. The data analysis system analyzes the 

data in histograms or scatter plots for cell classification even cell sorting.  

  Historically, the first automatic measurement and analysis of single cells were carried out 

with the Coulter counter in the early 1940’s [11]. As blood cells pass through a capillary, they 

changed the electric impedance between intercepting electrodes which can be measured for 

counting the number of cells. In 1950s cell population on a microscope slide were 

interrogated with a micro spectrophotometer at UV wavelengths, which was a precursor to 

fluorescence detectors of a cell stream [12]. Some researchers tried to identify cells 

automatically based on their nuclear sizes and indices of refractions as biomarkers for cell 

malignancy [13]. As the development of computing technology, further efforts were made to 

process a great amount of cell data. At the same time, Acridine Orange was firstly used for 

fluorescence staining to generate and analyze RNA concentration in the cell [14]. In 1960s, 

some researchers attempted to use a laser scanning microscopy to extract cellular features 

automatically such as the size of cell and nuclear as well as the texture pattern of the acquired 



9 

images by the pattern recognition analysis. After that, vibrating mirrors were firstly used to 

scan a laser beam and extract cell features such as the size of the cell and the size of the 

nucleus according to the variation of dye’s concentration on the image texture. In addition, 

this provided an insight of extracting image patterns by the intracellular variation in the 

refractive index. In these capacities, it usually took two minutes or more time to scan and 

analyze a single cell with a laser scanning cytometer [1]. Then another group made an effort 

to analyze large population of cells through the flow cytometer by the forward light scatter 

signals to differentiate white blood cells [11]. In the early 1970s a research group in the Los 

Alamos National Laboratory applied the ink jet principle for cell sorting [15]. They charged 

droplets containing cells and steered them based on results of the optical interrogation. After 

1970s, the major development of FCM has been the detection of fluorescence signals for 

analysis of cellular functions. Most FCM systems now acquire both fluorescent and scatter 

signals for cell assay with very limited morphology information [16]. The forward scatter 

(FSC) signal and side scatter (SC) signal only indicate the cell volume and the degree of 

heterogeneity in intracellular distribution of the refractive index, which provide limited 

information for cell classification and quantifying the morphology changes. Incorporation of 

cell imaging into the fast FCM technology platform attracts long-standing interests for its 

potential to peek into and extract morphological features in additional to the molecular 

information [17]. Non-coherent imaging FCM is commercially available now [18]. But 

several shortcomings exist such as the requirement of fluorescent staining and the difficulty 

to automate the image processing in real time because of the localized, highly varied and 
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convoluted structural elements in the fluorescence images. Several groups have investigated 

imaging of coherently scattered light with flow cytometric or microfluidic devices. But the 

images they have reported are of poor contrast that are difficult to be analyzed accurately 

[19,20]. 

 

2.4  Diffraction imaging flow cytometry  

  Since 2005 the Biomedical Laser Laboratory at East Carolina University has developed a 

method of diffraction imaging flow cytometry (DIFC) to record the scattered light as 

high-contrast images from single cells excited by a coherent laser beam[21,22,23,24]. As the 

result of coherent superposition of scattered wavefields in space, diffraction images from 

single cells present non-local patterns and rarely contain segmental structures, which enable 

automated image processing in real time. Furthermore, coherent scattering by cells are 

modeled accurately by the classical electrodynamic or wave theory and thus provide 

opportunity to compare the theoretical modeling results of diffraction imaging with 

experimental data to gain insights. Since 2013, the DIFC method has been improved and 

renamed as polarized- Diffraction Imaging Flow Cytometry (p-DIFC). The new method can 

simultaneously acquire two polarized diffraction images by two CCD cameras for each cell, 

which enables for the first time extraction of information from polarized light scattering 

patterns for detailed analysis of the cells in an imaging flow cytometer.  
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2.5  Cell types in this study 

  We investigate the p-DIFC method with different types of cells including three cell lines 

and three primary cell types. A cell line consists of transformed and immortal cells derived 

typically from a single cancer cell that can be maintained in culture medium. Therefore the 

cells in a cell line have a uniform genetic makeup and a low degree of heterogeneity in 

morphology variations. After the cells are isolated from the tissue, they proliferate under 

appropriate conditions and occupy all of the available substrate. This stage is called primary 

culture and cells have to be subcultured by transferring them to a new vessel with fresh 

growth medium to provide more room for continued growth. After the subculture, the 

primary culture becomes a cell line or subclone. Cell lines usually have a limited life span 

and as they are passaged, cells with the highest growth capacity predominate, resulting in a 

high degree of genotypic and phenotypic uniformity in the population, which provides a 

perfect starting point to test our p-DIFC method. In our study, the three cell lines of PC3, 

Jurkat, and Ramos cells were utilized. On the other hand, primary cells are directly from an 

animal or plant without transformation to cell lines. Primary cells reveal the physiological 

state of cells in vivo and provide more relevant data representing the living system. The 

primary cells in this dissertation are CD4+ T lymphocytes and CD8+ T lymphocytes from 

human spleen tissue.         

2.5.1  PC3 and PCS 

  Prostate cells are typical epithelial cells from the prostate, which is a walnut-sized gland 

located between the bladder and the penis and produces the seminal fluid that nourishes and 
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transports sperm for males. Prostate cancer is one of the most common types of cancer in US. It 

usually grows slowly and initially remains confined to the prostate gland, where it may not 

cause serious harm. While some types of prostate cancer grow slowly and may need minimal or 

no treatment, other types are aggressive and can spread quickly. Prostate cancer that is detected 

early, when it's still confined to the prostate gland, has a better chance of a successful 

treatment. 

  Rapidly quantification and measurement of the morphological differences in normal 

prostate cells and their cancerous counterparts is a long-term challenge, which can be 

developed as a rapid method of cell assay for early detection of prostate cancers through 

testing blood or urine samples. We select PCS as normal prostate cells and PC3 as prostate 

cancer cells to test our p-DIFC method. PCS (PCS-440-010, ATCC) cells are prostate 

epithelial cells and usually used as a control group for the study of prostate cancer. PC3 

(CRL-1435, ATCC) cells are cancer cell lines that established in 1979 from bone metastasis 

of grade IV of prostate cancer in a 62-year-old male [25]. A morphology based classification 

of PCS and PC3 cells may yield a significant insight on the morphological differences 

between malignant and “normal” cells of common prostate lineages for study of prostate 

cancers.  

2.5.2  Jurkat and Ramos 

  White blood cells (WBCs) are the cells of the immune system that protect the body against 

both infectious diseases and foreign invaders. All WBCs are produced and derived from 

the multipotential hematopoietic stem cells from bone marrow . WBCs are found throughout 

http://en.wikipedia.org/wiki/Cell_(biology)
http://en.wikipedia.org/wiki/Immune_system
http://en.wikipedia.org/wiki/Infectious_disease
http://en.wikipedia.org/wiki/Bone_marrow


13 

the body including the lymphatic system and the blood [26]. There are five different types of 

WBCs: Neutrophils, Eosinophils, Basophils, Lymphocytes, and Monocytes. And they can be 

distinguished by their physical and functional characteristics. The number of WBCs in 

the blood is often an indicator of disease. The normal white cell count is usually between 4 and 

11 × 10
9
/L. In the US this is usually expressed as four thousands to eleven thousands white 

blood cells per l of blood [27]. They make up approximately 1% of the total blood volume in 

a healthy adult.  

  We analyze WBCs by investigating the differences in morphology and light scattering 

among various lymphocytes including subtypes of T and B cells that have been widely 

deemed as morphologically indistinguishable [16]. At the beginning of my dissertation study, 

we have studied cancer cell lines Jurkat and Ramos. The Jurkat cell line (TIB-152, ATTC) 

was established in the late 1970s from the peripheral blood of a 14-year-old boy with T cell 

leukemia [28]. The Ramos cell line (CRL-1596, ATTC) was derived from the B lymphocytes 

of a 3-year-old boy who had Burkitt's lymphoma.    

2.5.3 CD4+ T lymphocytes and CD8+ T lymphocytes  

  T lymphocytes are very important cell types of mammalian immune responses to 

pathogens and abnormal cells. T lymphocytes can be further divided into subtypes through 

immunophenotyping with fluorochrome-conjugated CD surface markers which have been 

shown to play different and critical roles in immune responses. For example, CD4+ T 

lymphocytes can be activated to become T regulatory (TReg) cells. CD8+ T lymphocytes can 

become T cytotoxic (TC) cells, which kills infected and cancer cells carrying antigens or 

http://en.wikipedia.org/wiki/Lymphatic_system
http://en.wikipedia.org/wiki/Blood
http://en.wikipedia.org/wiki/Disease
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mutations. In contrast, the TReg cells perform regulatory roles by suppressing immune 

responses to self-antigens. Clinical studies of various T cell subtypes in cancer patients have 

shown that cancer patients tend to have higher ratios of CD8+/CD4+ T cells [29, 30]. Despite 

the fact that T lymphocytes can be routinely classified into subtypes using CD markers, 

development of label-free and rapid method to distinguish these primary cells can yield a 

powerful tool for study of lymphocytes and other white blood cells in immunology and other 

fields such as immunotherapy of cancer patients [31]. Besides its clinical implications, the 

investigation of cellular structures among the different T lymphocyte subtypes provides 

insights on the fundamental relations between structure and function at the cell level.  

 



 

 

 

CHAPTER 3  IMAGE ANALYSIS ALGORITHMS  

  The experimental data acquired through this dissertation research are presented in the form 

of confocal microscopy and diffraction images. Analysis of these image data and subsequent 

cell classification study require multiple image processing and data mining algorithms which 

have been developed over the last few decades. In this chapter, we present the principles of 

these algorithms and their applications in our investigations.  

 

3.1  Image preprocessing 

3.1.1  Different image types in the raw data 

  A cell suspension sample contains various types of particles other than intact cells such as 

cellular debris and solid particles or aggregated particles formed inside the cell culture 

medium. Furthermore, due to the variations of experimental conditions such as the core fluid 

position relative to the focus of the incident laser beam, the raw diffraction images acquired 

by our p-DIFC system can become underexposed or overexposed. Thus the diffraction image 

data acquired by the p-DIFC system requires preprocessing before analysis of the image 

textures for cell assay. For this purpose, an image preprocessing software has been developed 

to classify the raw image pair data into five types of underexposed image pair (UIP), 

overexposed image pair (OIP), large speckle image pair (LIP) , stripe image pair (SIP) and 

intact cell image pair (CIP). Through previous experimental and modeling studies, we found 
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that the diffraction patterns in CIP can be attributed to the coherent superposition of EM 

fields of light scattered from intact biological cells of sizes 5 μm or larger [21,22,23]. 

Therefore, the CIPs provide the image data we need for subsequent image analysis and cell 

classification. Contrary to CIPs, LIPs are the results of coherent light scattering by small- 

sized particles or cell debris with dimensions typically less than 3m while the SIPs are 

formed by the coherent light scattered by particles of highly symmetric morphology such as 

microspheres. The other two types of image pairs, UIPs and OIPs, are dominated by noises 

which need to be removed together with LIPs and SIPs. The four types of images other than 

the CIP are filtered out by a preprocessing software based on the following algorithms.  

3.1.2  Image preprocessing by pixel intensity 

The image preprocessing software reads the raw diffraction images J(z, y) as the input data 

with the z-axis representing the horizontal direction or the incident beam direction and y-axis 

representing the vertical or the flow direction of the imaged particle. Multiple pixel intensity 

parameters are obtained as the values of minimum pixel intensity Jmin, maximum pixel 

intensity Jmax and average pixel intensity Jav from each J(z, y) in the 12-bit cross-polarized 

diffraction image pair data. An image pair is marked as UIP if the values of Jav for both 

images in the pair are smaller than 80 or less than 2% of the 12-bit pixel saturation value Jsat 

at 4095. If the total number of saturated pixels Jsat of one image in an image pair is more than 

3000 or more than 1% of the total number of pixels in the image, the image pair is marked as 

OIP.  
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3.1.3  Image preprocessing by stripe patterns 

Different from the identification of UIP or OIP, it is much more complex to select and 

remove the SIP by single or aggregated spheres or spherical particles with a homogeneous 

internal structure in terms of the refractive index distribution [21, 24] and LIP by small sized 

cellular objects such as debris [45]. The details of the algorithm are provided below.  

The image preprocessing software [45] calculates firstly the average pixel intensity of an 

image in a pair as the threshold to convert the normalized diffraction image J(z, y) into a 

binary one as B(z, y). After that, four Sobel operators shown below for edge detection are 

applied to obtain the speckle borderlines or edges along four directions of horizontal (h), 

vertical (v), left diagonal (l) and right diagonal (r) respectively [47]:  

1 2 1 1 0 1 0 1 2 2 1 0

0 0 0 , 2 0 2 , 1 0 1 , 1 0 1

1 2 1 1 0 1 2 1 0 0 1 2

G G G G
h v l r

             
       
      
       
                

. 

After convoluting the four operators with B(z, y), a set of four directional edge images Ea(z, 

y) can be derived, where a=(h, v, l, r). A complete edge image ET(z, y) can be obtained by 

summing the four directional images. The maximum intensity for borderlines is set to 1 and 

all other pixels are set to 0. We can sum quickly for a set of 5 length parameters as [Ch ,Cv, Cl, 

Cr] and CT , which help us separate those images of the stripe patterns from the other two 

types of speckle patterns by comparing [Ch ,Cv] or [Cl, Cr] in a pair of edge images. [Ch ,Cv] 

or [Cl, Cr] are mutually perpendicular. If Cl < Cth and Cl< 0.3C2 (Cl is the lesser of the two C 

parameters in the pair and Cth=2500 is the threshold), the diffraction image is marked as the 
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stripe with the direction along (or approximately along) the direction of the edge image with 

C2. 

3.1.4  Image preprocessing by speckle size 

To identify the image pairs by cell debris or small particles, the image preprocessing 

software extracts additional parameters from J(z, y) in frequency space for accurate grouping 

the rest of the diffraction images according to the speckle sizes in the real space. J(z, y) is 

mapped in to the frequency space (u, v) with a 2D fast Fourier transform (FFT) as  

                                      
 

  

 

  
            .          (1)     

A power spectrum image can be obtained as P(u,v)=|F(u,v)|. Analysis of our diffraction 

images from previous experiments led to the conclusion that the images of large speckle 

patterns often contain bright spots of linear sizes of 150 or more pixels [45]. Therefore we 

choose the frequency threshold as  

                
1 1

0.00667( )
150( )

f
th
 

 
,                            (2)        

where is the inter-pixel distance. After getting fth, we can derive a histogram N(f) of high 

frequency pixels in P(u, v) with f=(u
2
+v

2
)
1/2

. N is the number of pixels with f>fth and P(u, 

v)>0.02P(0,0). The sum of N(f) yields the number of pixels with high power and frequency 

NP in the power spectrum image P(u, v). 

In our previous study, we also found that diffraction images with the normal speckle pattern 

tend to have CT and NP values larger than images with large speckles [45]. Moreover the 
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presence of the noise due to spurious light and the significant morphological variations of the 

imaged objects can lead to fluctuations in the absolute values of CT and NP as well as their 

relative differences among samples of different cells. The software successfully calibrates 

and minimizes the effect of these fluctuations in an automated procedure by using k-means 

clustering technique to rank and scale the extracted parameters of the given data set. The 

k-means clustering technique separates all dots into k groups according to their distances to k 

centers under appropriate conditions [48]. If a dot is closer to one center than others, it is 

assigned into the group represented by that center. The software utilizes two 2D scatter plots 

of As(NP, CT) and Ap(NP, CT) on the NP-CT plane. The global patterns as characterized by NP 

and CT correlate strongly with the categorical sizes of the imaged objects.  

  To divide the image pairs into two patterns with k=2, we initially assign two centers as 

(NPai,CTai), where a=s or a=p for each of the two plots. The initial centers are updates by the 

averaged values of NP and CT in each plot and it iterates until the two centers converged to 

the final values of (NPaf,CTaf). Minor changes [45] have been made for the standard k-means 

clustering technique to reduce the effect of fluctuation in NP and CT. And the SVM analysis 

for each imaged object using a classification vector of four parameters (NP1, CT1, NP2, CT2) is 

also performed after correct ranking. We will introduce the SVM algorithm in section 3.3. A 

scaling method is used in the software to further eliminate the training repeatedly for different 

data sets. Four parameters extracted from a cross-polarized diffraction image pair in the new 

dataset are scaled as follows 
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where NPif  and CTif  are the averaged parameters obtained by the k-means clustering analysis 

on the new data set, |Pif refN and |Tif refC  are values of the reference data set, and i=1 or 2. At 

last, the software automatically classifies the image objects into two types of speckle patterns 

after removal of those with the stripe patterns using the calibrated parameters of 

( 1 1 2 2', ', ', 'P T P TN C N C ). The averaged value of accuracy for this preprocessing with our 

software was found to be 97.1% [45].  

3.1.5  Image normalization 

After identification and removal of OIP, UIP, SIP and LIP images, the rest of the raw 

12-bit images J(z, y) are normalized into 8-bit images I(z, y) as the input data to a GLCM 

algorithm based image processing software for the subsequent texture analysis. A linear 

transformation of the pixel intensity given below is used to obtain the normalized images:  

 min

max min

( , )
( , ) 255.

J z y J
I z y

J J


 


 (4) 

With this transformation the minimum and maximum pixel intensities in the 12-bit image 

J(z, y) are set to 0 and 255 in the 8-bit image I(z, y). The normalization and bit reduction are 

necessary to remove the dependence of the image textures on the power of the incident laser 

beam and speed up the calculation of texture parameters with the GLCM algorithm without 

significant loss of the dynamic range. 
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3.2  The GLCM algorithm for texture analysis 

3.2.1   Analysis of image texture 

  Diffraction images present diffraction patterns of coherent light as image texture. It is 

difficult to define a set of meaningful features to quantify image texture information from the 

block of resolution pixels. As long as these features are defined, image blocks can be 

categorized using pattern-recognition techniques. When we search for meaningful features 

for describing pictorial information, there is an instinct to focus on types of features that can 

interpret pictorial information. Spectral, textural, and contextual are three fundamental 

pattern elements among features used in interpretation of images.  

a. Spectral features describe the average tonal variations in various bands of the visible and 

infrared portions in an electromagnetic spectrum. 

b. Contextual features contain information derived from blocks of image data surrounding 

the area being analyzed. 

c. Textural features contain information of the spatial distribution of tonal (denoted here as 

pixel values or as gray-levels) variations within a band, where tone is based on the 

varying shades of gray of resolution cells in a photographic [32]. Texture and tone are not 

independent features and they have an inextricable relationship to one another. The 

texture is the only one concerned with the spatial distribution (statistical) of gray tones. 

Texture is also an innate property of a diffraction image and contains vital information 

about the structure of the scatters and their response to the wavefields of the incident light 

in our case. Since the textural properties of images carry useful information especially for 

discrimination of the biological cells, we focus our image analysis effort on image texture 

for our study on cell classification.  
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3.2.2  Definition of the GLCM algorithm 

Haralick introduced a method of gray level co-occurrence matrix (GLCM) in 1970s to 

quantify image texture [33]. Since then, the GLCM algorithm has been widely used as a 

texture characterization tool in various fields such as analysis of satellite images [49] and 

identification of abnormal tissues in clinical images [50]. The GLCM algorithm can be 

described as a method to extract second order statistical parameters from a monochromatic or 

gray-level image. In GLCM, Lx = {1, ,…,NX} is the horizontal spatial domain, Ly= {1, ,…, 

Ny} is the vertical spatial domain, and G={1, ,…, Ng} is the set of quantized gray levels Ng 

(G=255 for the 8-bit gray level image). The set Ly x Lx is the set of pixels of the image 

ordered by their row-column designations. An input image I can be regarded as a function 

that assigns some gray level in G to each pixel in Ly x Lx. It is assumed that the texture 

information in an image I is contained in the overall or average spatial relationship. Let’s 

denote p(i, j, d) as the “co-occurrence” frequency of two neighboring pixels that are separated 

by the displacement vector d = (d, ) with one pixel of gray level i and the other of gray level 

j. The frequencies of 4 angles ( =0, 45, 90, and 135 degree) are defined by  

( , , ,0 ) #{(( , ), ( , )) ( ) ( ) 0, , ( , ) , ( , ) }y x y xp i j d k l m n L L L L k m l n d I k l i I m n j            

( , )

( , , , 45 ) #{(( , ), ( , )) ( ) ( ) ( , )}

( , ) , ( , )

y x y x

k m d l n d

p i j d k l m n L L L L or k m d l n d

I k l i I m n j

    

         
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（ ）

or（ ）   ,     (5) 

where # is the number of pixels in the set. A gray level co-occurrence matrix P can be 

obtained with the elements as frequency p(i, j, d). It is easy to show that the matrix is 

symmetric since p(i, j, d)= p(j, i, d) and depends on the choice of d.  

For example, if we have a 4x4 image I with pixel values ranging from 0 to 3 as shown in Fig. 

3-1:  

0 0 1 1 

0 0 1 1 

0 2 2 2 

2 2 3 3 

                     

The frequencies of the gray-level co-occurrence can be found for the horizontal direction 

(=0) and d=1:  

(0,0,1,0 ) 4 (0,1,1,0 ) 2, (0,2,1,0 ) 1 (0,3,1,0 ) 0p p p p   ， ， , 

(1,0,1,0 ) 2 (1,1,1,0 ) 4, (1,2,1,0 ) 0 (1,3,1,0 ) 0p p p p   ， ， , 

(2,0,1,0 ) 1 (2,1,1,0 =0, (2,2,1,0 ) 6 (2,3,1,0 ) 1p p p p  ， ） ， , 

(3,0,1,0 ) 0 (3,1,1,0 ) 0, (3,2,1,0 ) 1 (3,3,1,0 ) 2p p p p   ， ， . 

With those frequencies, the GLCM of the input image I can be represented by a matrix PH 

for the horizontal direction as:  

Fig.3-1 Pixel values of a 4x4 image 
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                      PH    

             
             
             
             

   . 

The GLCM matrix for 45-degree direction PRD, vertical direction PV, and 135-degree 

direction PLD are obtained as well:    

                        PRD   

             
             
             
             

   ; 

                      PV     

             
             
             
             

   ; 

    PLD   

             
             
             
             

   . 

3.2.3  Definition of image parameters 

 The GLCM is usually expressed with normalized frequencies as p(i,j)=P(i,j)/R, where R 

is the total pair of the neighboring pixels for calculating the matrix P. The GLCM based 

image processing software reads the normalized 8-bit diffraction image I(z, y) and calculates 

the corresponding GLCM as p(i, j) of I(z, y), where i={0,1, ,…, G-1}, j={0,1, ,…,G-1}, and 

G=255 for the 8-bit gray level images. In our study, a total of 19 parameters have been 

extracted for each of the cross-polarized diffraction image pair which include 17 texture 

parameters defined through p(i, j) and 2 parameters of maximum pixel and minimum pixels 

from the 12-bit image J(z, y). Therefore, each cross-polarized image pair yields 38 parameters 

to represent each imaged cell by the p-DIFC method. The definitions of the19 parameters 
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extracted from a diffraction image are provided in Appendix A. We select a few parameters 

here to discuss their geometric implications. 

Correlation (COR) is a measure of the linear dependency of gray levels on those of 

neighboring pixels or specified points, and it is an indicator of local gray-level dependency 

on the texture image. Higher values can be obtained for similar gray-level regions. 

Contrast (CON) is a measure of the local variations presented in an image. It is highly 

correlated with the difference between the highest and the lowest values of a continuous set 

of pixels particularly when the value of the displacement vector is 1[35]. The contrast will be 

very high if there is a large amount of variation in an image. 

Inverse difference moment (IDM) measures the local homogeneity of an image. The 

incidence of co-occurrence of pixel pairs is enhanced when they are close in gray-scale value. 

The weight factor (1+(i-j)
2
)
-1

 makes IDM have small contributions from inhomogeneous 

areas and i≠j. For an inhomogeneous image, the IDM value is low.  

Entropy (ENT) measures the randomness of the image texture according to its intensity 

distribution. We get the highest entropy when all probabilities are equal. Thus, a lower 

entropy value indicates a homogeneous image, while an inhomogeneous region has a higher 

entropy value.  

Angular Second Moment (ASM) also known as “Energy”, is a measure of homogeneity of 

an image [36]. A homogeneous area only has a few gray levels. So GLCM matrix will have a 
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few but relatively high p(i, j). Meanwhile the sum of the squares will be high. Higher values 

indicate that the textural is uniform or homogeneous.  

Variance (VAR) has a relatively high weight on the elements that differ from the average 

value of p(i,j). It refers to the gray-level variability of pixel pairs and measures heterogeneity. 

When the gray-scale value is different from the mean, the variance will increase. The 

variance, unlike contrast, has no spatial frequency. A high variance indicates a high contrast 

value; however the converse relationship does not apply [37]. 

Cluster shade (CLS) measures the skewness of the matrix. It is believed that the CLS 

predicts the uniformity [38]. When CLS is high, the image is asymmetric.  

Cluster prominence (CLP) is also a measure of asymmetry [38]. When CLP is high, the 

image is less symmetric. Also, when CLP is low, there is a peak in the GLCM matrix around 

the mean value. 

Normalized minimum pixel intensity (IMIN) and normalized maximum pixel intensity 

(IMAX) are used to remove the effect of different power of the incident laser beam. 

 

3.3  Support Vector Machine algorithm  

3.3.1  General description of the algorithm 

Support Vector Machine (SVM) is a supervised machine learning method that has been 

used widely for data mining research such as classification, regression, and other learning 
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tasks [34]. In general, a classification algorithm uses an object’s characteristic parameters to 

identify which type it belongs to by making a classification decision based on the value of 

characteristic parameters, which can be expressed in the form of a parameter vector xi with i 

as the identification index of the object. Given a vector xi ∈ R
J
, i= 1,…N in a training data 

set of N objects and an indicator vector y with its component yi of value either 1 or -1, 

indicating one of the two classes to which the point xi belongs to, and xi
T
=（xi1, xi2,…, xij,…, xiJ）

can be considered as a position vector in a parameter space of J dimension, where J is the 

total number of parameters. The set of parameter vectors of xi and yi can thus represent a 

training data set D = {(x1，y1),…,(xi，yi),…,(xN，yN)}.  

In SVM, classification is achieved with a decision function defined as  

( ) ,TF b x w x                            (6) 

where 
1

J

j j

j

w


w u is a weighting vector and b is the bias parameter. The goal of SVM 

algorithm is to determine the decision function F from a given training data set D, which can 

be used to determine the value of y for an unknown object x using following criteria: 

                          
                  

                     
  .                         (7)                                               

At first we consider a linearly separable training data set D. The goal of SVM algorithm is 

to obtain the decision function which defines an optimal hyperplane of F=0 and uniquely 

separates the objects in a training data with the maximal margins or distances between the 

hyperplane and nearest objects in each type.  
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  As shown in Fig. 3-2, the distance from the origin to the hyperplane is given by 
b


w

 

and the margin from distances of the plane F(x)>1 and F(x)<1 defined by the nearest objects 

are equal to each other and given by 
12 ( )

2iF 


x
w

w
. With the hyperplane F=0, the SVM 

algorithm separates the two types of objects by finding the maximum margin. This problem is 

solved in SVM as an optimization problem by minimizing the value of w  under certain 

constrains.   

Since a data set may not be linearly separable, the accuracy of classification is not always 

100%. For these cases, the SVM algorithm applies a soft-margin classification scheme that 

allows classification errors and solves the following problem to maximize the margin
1

w  : 

     
minimi e              

 
  

1

 
        

 
 
                                  

subject to                 1   
 
               and  

 
 0 

 ,            (8) 

Fig. 3-2 A linearly separable hyperplane 
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where  i is the penalty parameters induced by the object I and C>0 is the regularization 

parameters. Despite the use of the soft-margin scheme, classification of the objects in a 

practical data set may not yield satisfactory results. To enhance the accuracy, SVM further 

employs a mapping kernel function to perform classifications in a high-dimensional feature 

space defined by the training data set instead of the J-dimensional parameter space. For 

instance consider a case shown in Fig.3-3 (A). The two types of the objects represented by 

the input parameter vector of J=2 is nonlinearly separable in the 2D space. The problem can 

become linearly separable if one maps the two parameters of x1 and x2 into a higher 

dimensional space using a function (x1, x2)=(x1
2
, 1 22x x , x2

2
). With the function (x) a 

hyperplane can be determined to discriminate the given objects linearly with the largest 

margin [40].  

 

 

 

 

 

Using a mapping function , Eq. (8) can be written as following: 

                      
  minimi e      

1

 
       

 
 
                                                                      

subject to          
         1   

 
               and  

 
 0 

    (9) 

Fig.3-3 (A). A nonlinearly separable dataset.         (B). New dataset after mapping 
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where ( )i i

i SV

y 


 iw x . In SVM, the kernel function is defined with paired parameter vectors 

as  

K(xi, xj ) ≡ (xi)
T
  (xj ).                       (10) 

Since the optimization problem shown in Eq. (9) is based on the dot product of two parameter 

vectors, SVM only needs the K function to map the training data into a high dimensional 

feature space without having to explicitly define the function x This technique of kernel 

function based mapping allows the determination of the decision function F by solving the 

following dual optimization problem [34]:  

                  
minimi e    

1

 
                                           

subject to         0  0         1    
   ,            (11) 

where e= [1,…,1]
T
 is the vector of all ones and Q is a positive semidefinite matrix of rank N 

with elements given by 

Qij ≡ yi yj K(xi, xj).                               (12) 

 After solving Eq. (11), the optimized vector  and the bias b can be confirmed and the 

decision function can be written as 

                         
 
              .                          (13) 

By solving the dual problem from training dataset D, SVM outputs the values of i iy and b, 

label names (-1 or 1), support vectors, and other information.  
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3.3.2  LIBSVM 

LIBSVM is an integrated software using the SVM algorithm for classification, regression, 

and distribution estimation. The purpose of LIBSVM is to help users from other research 

fields to use SVM easily without knowing the details of the implementation. LIBSVM is 

available in different programming languages including C++, C#, JAVA, Python, R, and 

MATLAB, which can be linked with users’ own programs. We select an open-source code 

package LIBSVM 2.86[39] and employ it in our software to examine 38 features of 

diffraction images. A classification task includes separating data into training and testing sets. 

Each training set involves a class label (cell type) and 38 features (image features in 3.2.2). 

LIBSVM produces a model which is based on the training data to predict the target values of 

the test data. Four basic Kernel functions provided by LIBSVM are: 

a. Linear:  K(xi, xj) = xi
T
xj. 

b. Polynomial:  K(xi, xj) = (xi
T
 xj +r)

d
 , 

c. Radial basis function (RBF):  K(xi, xj) = exp(-xi, - xj ||
2
 ),  

d. Sigmoid:  K(xi, xj) = tanh(xi
T
 xj + r). 

 , r, and d are kernel parameters. In LIBSVM, =1/J , r=0, and d=3. The effectiveness of 

SVM classification depends on the selection of kernel functions. The operator xi
T
xj exists in 

four kernel functions and is calculated by the function dot(xi, xj) in LIBSVM, which returns 

an inner product. For instance, if we have two cells xi and xj , and each has 4 parameters as 

following:  xi
T
= {1，2，3，4}，xj

T 
= {5，6，7，8}. We can get K(xi, xj)= 

1x5+2x6+3x7+4x8=70. 
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In RBF kernel function, ||xixj||
2
=xi

2
+xj

2
-2xi

T
xj. Among 4 kernel functions, the RBF kernel 

function is considered as the first choice [43]. Unlike the linear kernel function, the RBF 

kernel function nonlinearly maps samples into a higher dimensional space. Thus it is able to 

classify two types of samples when class labels and attributes are nonlinear. The linear kernel 

function is considered as a special form of the RBF kernel function [44]. It is due to the linear 

kernel function with a penalty parameter C performs the same as the RBF kernel function 

with parameters(C, ). In addition, the number of hyper parameters influences the complexity 

of the model selection. It is obvious that the polynomial kernel function has more hyper 

parameters than the RBF kernel function. At last, there are fewer numerical difficulties for 

the RBF kernel function. For polynomial kernels function, the kernel values may go to 

infinity or zero when the degree is large. In contrast, the kernel value of RBF is from 0 to 1.  

 Accuracy (A) measures the accuracy of classification of two known samples and it is 

defined as following: 

   
     

           
                          (14) 

  For example PC3 and PCS cells are two known data sets for cell classification, then TP 

(true-positive) is the number of correctly identified image pairs acquired from PC3 cells; TN 

(true-negative) is the number of correctly identified image pairs from PCS cells; FP 

(false-positive) is the number of image pairs of PCS cells but incorrectly identified as of PC3 

cells; FN (false-negative) is the number of image pairs of PC3 cells but incorrectly identified 

as of PCS cells; N is the number of diffraction image pairs in the data set. Five-fold 

cross-validation is used to evaluate the individual performance of 38 image parameters with 
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different kernel functions. The algorithm randomly divides the training data set into five or 

nearly equal five parts: four parts are training sets and one part is the test set. It iterated five 

times to obtain the average test accuracy Aav. Different SVM models were then formed by a 

parameter vector in the training data with selected parameters M in the same sequence of 

ranking as components. Each SVM model was trained in the feature space with the training 

data and the same scheme of five-fold cross-validation is used to obtain Aav for the 

evaluation.  

  The data is processed by our software in the following procedure:  

1. Transform the data to the format of LIBSVM. 

2. Choose the texture features we want to train as the training set. The format of input 

file is: [label] [index1]:[value1] [index2]:[value2] ..., where label is the class of the 

classification (1 or -1). The index represents the name of the feature and usually is a 

continuous integer. Values are the actual data for training. 

3. Choose the kernel function for training.  

4. Use five-fold cross-validation to find the best parameters with the highest ACC for 

each kernel function.  

5. Use the best kernel function and the best combination of parameters to train the 

training set and get the training model.  

6. Test the model with the test set. 

   

 

 



 

 

 

CHAPTER 4   EXPERIMENTAL METHODS 

In order to investigate if the p-DIFC method is able to accurately classify cells which have 

high degree of similarity, we have acquired confocal image stacks and cross-polarized 

diffraction image pair data from different types of cells. Reconstruction of 3D structures and 

statistical analysis have been performed to calculate their morphologic parameters and to 

compare quantitatively the difference and similarity in 3D morphology among different types 

of cells. Cross-polarized diffraction image pair data has been used to obtain useful image 

parameters for classification. In this chapter, we present the experimental procedures of 

confocal imaging and diffraction imaging with an in-house developed system and related 

image analysis. 

 

4.1  Confocal imaging and 3D reconstruction 

4.1.1  Cell preparation  

We have studied multiple human cancer cell lines and primary cells derived from 

non-malignant tissues of prostate and spleen. The human epithelial cells include the PC-3 

prostate cancer cell line (CRL-1435, ATCC) and normal prostate cells (PCS440010, ATCC), 

which are denoted here as PC3 cells and PCS cells, respectively. The PC3 cells were 

maintained in RPMI-1640 (Gibco BRL, Life Technologies) supplemented with 10% fetal calf 

serum (FCS) and PCS cells were maintained in the prostate epithelial cell basal medium 

(PCS440030, ATCC) supplemented with the prostate epithelial cell growth kit (PCS440040, 

ATCC). The cancer cell lines derived from malignant T and B cells consist of the Jurkat 



35 

(TIB-152, ATCC) and Ramos (CRL-1596, ATCC) which are cultured in the same medium 

RPMI-1640. The cultured cells of PC3, PCS, Jurkat, and Ramos were incubated in 37
o
C and 

5% CO2 environment with PC3 and PCS adherent to the growing plates and detached by 

adding Trypsin-EDTA solution. The cells to be imaged were washed with the DPBS buffer 

before experiments. The protocol of detaching the cells in suspension can be found in the 

Appendix B.  

The human primary cells used in this study include CD4+ and CD8+ T lymphocytes 

extracted from fresh spleen tissues. Samples of spleen tissues are from the Department of 

Pathology, Brody school of Medicine. The operations were within five hours. A spleen tissue 

was first cut and grinded with two frosted glass slides gently in the RPMI culture medium in 

the plate. If the cells are grinded with too much power or heavily squeezed, the cell structure 

may be damaged and present an irregular morphology. Therefore this grinding process 

requires patience and usually takes about one hour until all small pieces disappear. Acquired 

cell suspension is filtered with a 70 m cell strainer to get rid of the fat particles from the 

spleen. After centrifuging and removing the supernatant and re-suspension, the red blood 

cells were removed by adding the red blood cell lysis buffer and shaking at room temperature 

for ten minutes. The protocol of splitting splenocytes can be found in the Appendix C.  

To obtain CD4+ and CD8+T lymphocytes from the prepared suspension of splenocytes, 

the cells were stained with fluorochrome-conjugated CD surface markers. The suspension 

sample was divided into two aliquots in a ratio of 1:9. The less aliquot is a control group 

without staining and only used for setting up the cell sorter. Another aliquot is stained with 3 

CD surface markers including CD4 PE-Cy5.5 (MHCD0418, Life Technologies), CD8 FITC 
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(MHCD0801, Life Technologies), and CD3 PE (CD0304, Life Technologies). Using CD3 

marker is to confirm the cells selected by CD4 or CD8 marker are 100% T lymphocytes. The 

standard procedure of direct immunofluorescence staining of culture cells is attached in 

Appendix D. At Department of Microbiology and Immunology, a high-speed cell sorter 

(FACSVantage SE, BD) is used to separate the stained aliquot into two suspensions: CD4+ T 

lymphocytes and CD8+ T lymphocytes. A blue laser with a wavelength of 488 nm is used for 

excitation and scatter measurement. Emission filters centered at 694nm and 519 nm are used 

for measurement of fluorescence by PE-CY5.5 conjugated CD4 and FITC conjugated CD8 

accordingly. Another emission filter centered at 575 nm measures the fluorescence by PE 

conjugated CD3. Signal gating was implemented by the FSC and SSC signals to prevent the 

presence of debris, doublets, and triplets in collected cell suspensions. After sorting, the ratio 

of living cells is about 95%. The T cell suspension samples were re-suspended with 

concentrations adjusted to about 2x10
6 
cells/ml for confocal imaging and 1x10

6 
cells/ml for 

p-DIFC measurement. The protocol of cell counting is in Appendix F. For confocal imaging, 

the cell suspension was further stained with Syto 61 dye for imaging nuclei and MitoTracker 

Orange dye (both from Life Technologies) for imaging mitochondria. The protocol of this 

double staining is in Appendix E.  

4.1.2  Confocal imaging 

  Laser scanning confocal microscopes (LSCM) employ one or more laser beams for 

excitation of fluorescent molecules in organelles. The laser beams are focused inside a cell by 

the objective, which is also used to collect the fluorescent light emitted from the reagent 
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molecules. As the laser beams are scanned by two mirrors before they enter the objective, the 

laser beams’ common focal spot moves over the x-y plane point by point. At each point, the 

fluorescent light collected by the objective is focused by another lens into a pinhole, which 

prevents fluorescent light coming out of the regions outside of the focal spot being detected 

by the photomultiplier (PMT) placed behind the pinhole. This is the principle of spatial 

filtering underlying LSCM that is responsible for the very short focal depth of each image 

consisting of the moving focal spots in the x-y plane. After the scanning within the field of 

view is complete, the signals acquired by PMT are stored as pixels for one image slice at a 

particular z position. The emitted fluorescent signals, up to three with different wavelengths 

bands, are stored into separate data arrays inside the computer memory. An image stack of 

multiple slices can be acquired by continuous translating the imaged cell over a sequence of 

z-positions with a step size of z with one image slice per z-position. 

Most researchers only use LSCM to obtain high-contrast and high-resolution cell images at 

a particular “depth” of the imaged cell or cells. Different from that, the imaging techniques in 

this dissertation is to acquire the image stack for 3D reconstruction and quantification of the 

morphology of the imaged cell by our in-house developed software. For this reason, we 

emphasis on acquisition of a complete image stack of sufficient number of image slices with 

signal-to-noise ratios as large as possible, which is critical for the 3D reconstruction software 

to segment correctly the interested intracellular organelles such as nucleus and mitochondria 

through pixel-to-pixel calculations in each image slice of the stack. Following figures provide 

examples of complete image stack of 6 types of cells. The ideal top slice and bottom slice 
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should be both dark images without any signal to ensure the completeness of the acquisition 

along the z-axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4-1 Confocal image stack acquired from a PC3 cell 

 

Fig.4-2 Confocal image stack acquired from a PCS cell 
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Fig.4-3 Confocal image stack acquired from a Jurkat cell 

 

Fig.4-4 Confocal image stack acquired from a Ramos cell 
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Department of Microbiology and Immunology provides the LSCM (LSM 510, Zeiss) in 

this study. Since we need high-contrast and high-resolution images, the objective of highest 

magnification should be used. We choose 63x water-immersion objective for PC3, PCS, 

Jurkat, and Ramos cells, and 100x oil-immersion objective for CD4+ and CD8+ T 

lymphocytes. The excitation lasers of confocal imaging are the 633nm red laser and the 

Fig.4-5 Confocal image stack acquired from a CD4+ T lymphocyte 

 

Fig.4-6 Confocal image stack acquired from a CD8+ T lymphocyte 
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543nm green laser for activating Syto-61 and MitoTracker antigens accordingly. A low-pass 

650 nm and band-pass 560-615 nm emission filters are selected for the red and green 

channels as shown in Fig.4-7 (A) and (B) accordingly. An image slice such as Fig.4-7(C) is 

composed of two channels: red channel for the nucleus and the cytoplasm; green channel for 

the mitochondria.  

 

  

 

 

 

  

 

The pixel depth we choose for imaging is 12 bits and the frame size is 512x512. The z-axis 

translation step size z is typically 0.5m .The scan rate is one of the keys of the image 

quality. One can slow the scan speed to allow more photons to integrate on the detector, or 

apply image averaging to remove random noise, or a combination of both. The average 

numbers available in the LSM software are 1, 2, 4, and 8; the scan speed in the LSM software 

has a range from 1 to 12. We usually apply speed 8 to have a fast acquisition without losing 

too much signal. If the image quality is still not satisfactory, a scan average number of 8 can 

be selected to improve the signal-to-noise ratio dramatically. However the image acquisition 

time will be 8 times longer which increases the chance of cell motion and bleaching of the 

Fig. 4-7   Confocal Slice Image acquired from a normal prostate cell in different channels: 

(A) Image slice in the red channel; (B) Image slice in the red channel; (C) Image 

slice in red and green channels. 
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fluorescent dyes. Another key to the image quality is the combination of the laser intensity 

and the detector gain which determine the total number of fluorescent photons received by 

the PMT and the brightness of the image. By examining the histogram, these parameters can 

be selected so that a few percent of pixels of the most intensive image slice are saturated. 

This will ensure the best use of the dynamic range of pixels for the later reconstructions and 

calculations. The signals from stained cells vary significantly and there is no constant number 

for the laser intensity or the gain. But the average intensity of the 633nm laser is 6 and the 

average of the 543nm laser intensity is 18. The average of detector gain for both channels is 

600 and very sensitive. Therefore when one tests for the best combination of the intensity of 

laser and the detector gain, the detector gain should be the first thing to modify.   

After initial settings, a careful observation should be made on the live stream. The stream 

helps users to find candidate cells for imaging in the field of view. Then cells are randomly 

selected for imaging by changing the digital zoom to 4x to clearly show the inner 

organization of the cells. The laser intensity and the gain are adjusted until one can acquire a 

high-contrast and high-resolution image. After finding the best gain and the best laser 

intensity, one returns to the live stream to find the top and the bottom of the image stacks. 

The experiment of capturing entire image stacks starts after selecting the scan speed and the 

average number. If the quality of the image stack is not as good as the one under the live 

stream, one should change the scan speed and the average number to increase the quality of 

images. 
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4.1.3  3D reconstruction and parameter calculation 

A Matlab-based software developed previously reconstructs the 3D structures of the cells 

from confocal image stacks. The cytoplasm, the nuclei, and the mitochondria of the cell are 

assigned with different values according to the image intensity. Red channel is sorted for the 

nuclei and green channel is sorted for the mitochondria. The cytoplasm is sorted by both 

channels. The result of sorting is visible in Fig.4-8 and an alternative is provided for resorting 

in a fast way. The threshold of the sorted image is able to be modified by the scrolling bar on 

the interface.  

     

 

 

 

 

 

 

 

 

 

The process of resorting doesn’t require any manual drawing. Also the system performs 

interpolation and generates about 21 3D parameters of the cell including: Cell volume, Cell 

surface area, Surface to volume ratio of cell, Index of surface irregularity of cell, Average 

Fig. 4-8  User interface of the 3D reconstruction software 
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distance of cell membrane voxels to centroid, Standard deviation, Nuclear volume, Nuclear 

surface area, Index of surface irregularity of nucleus, Mitochondrial volume, Mitochondrial 

surface area, Surface to volume ratio of mitochondria, Index of surface irregularity of 

mitochondria, Distance between the centroids of nucleus and cell, Volume ratio of nucleus to 

cell, and Volume ratio of mitochondrion to cell.    

To process the cell images with the software, firstly we use Zeiss LSM image browser to 

open the LSM image and convert the LSM file to 12-bit tiff stacks. Because our software can 

only process tiff image stacks. The software opens the tiff image stacks according to the files’ 

path, the total image slice number, and the Z step. The first and the last slice numbers of the 

cytoplasm, the mitochondria and the nucleus are required for sorting procedure as well. We 

draw the interest of the area manually to select the pixels for the cell. The system will halt 

and wait for the threshold of the nucleus. Therefore we can sketch the area of the nucleus and 

select the pixels for it. Within the area of nucleus, system will calculate the average intensity 

as a reference. A histogram analysis will be performed, and the minimum value of the first 

peak will be chosen as the threshold of the cell membrane. Meanwhile the pixel intensity of 

the second peak will be used as the threshold of the nucleus. Sobel operation is performed 

based on derivative based edge detection on all slices, and a threshold of derivative is 

selected through the trial and the error to generate a binary stack for segmentation of the 

cytoplasm and the nucleus from the background. Opening and closing fill-point gap 

operations are implemented to remove the invalid pixels and smooth out the cell membranes’ 

border lines. We observe the result of the nucleus after sorting. If the size of the nucleus is 
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too large, the threshold we used is too small. Therefore, it is necessary to resort by adjusting 

the threshold. After sorting the nucleus, we draw the area of mitochondria manually and pick 

a bulk of closed area of the mitochondria. The system will use its average intensity as the 

threshold for sorting the mitochondria. System uses the Watershed algorithm to produce the 

borderlines that separate different mitochondria clusters. Next we observe the result of the 

mitochondria after sorting to determine if a resorting is needed. If we are satisfied with the 

result, the system will do the shape based interpolation for the cell. The system interpolates 

the cytoplasm, the nucleus, and the mitochondria accordingly. A sliding scheme is applied to 

add additional slices between the neighboring slices. After reconstruction, we quantitatively 

analyze the 3D structures and obtain 27 morphological parameters of the cytoplasm, the 

nucleus and the mitochondria, which provide essential morphology data correlated to the 

diffraction image feature parameters obtained by the p-DIFC method. Statistical analysis of 

morphological parameters is performed with the SPSS software (IBM, version 17) to evaluate 

the significance of the differences between two selected cell types. 

 

4.2  Diffraction imaging measurement 

4.2.1  Optical design 

The p-DIFC system has been improved both on software and hardware to increase the 

speed of imaging and the accuracy of analysis as shown in Fig. 4-9. With a concentric sheath 

fluid at a higher pressure entering the chamber, cells carried by the core fluid move in single 

file through a continuous-wave solid state green laser (MGL-III-532-100, CNI) beam and 
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each emitting light scatters at the same wavelength of 532nm. The laser beam is linearly 

polarized with its direction adjustable using a half-wave plate (WP). The power of the beam 

passing WP can be up to 200mW. A spherical lens of 75mm in focal length focuses the 

incident beam onto the core fluid with a spot diameter of about 30m. The light scatter from 

flowing cells were collected by an infinity-corrected 50x objective (378-805-3, Mitutoyo) 

within an angular cone, which was centered at the scattering polar angle s=90
o
 along the 

x-axis and of a cone angle in water. An interference filter(WF) of 532nm combined with a 

polarizing beam splitter(PBS) divides the side scatters collected by an objective into two 

components of horizontal and vertical polarizations, labeled as p- polarization and s- 

polarization for p-CCD cameras and s-CCD cameras (LU75M, Lumenera). Pairs of 

diffraction images of 640x480 pixels and 12-bit pixel depth are acquired from flowing cells 

with different incident beam (vertical, horizontal, and 45
 o 

polarizations). In each 

measurement, a small portion of cell suspension sample (<200 l) is loaded into the core 

fluid syringe followed by alignment of the imaging unit to the off-focus position x (x=150 

μm for Prostate cells and x=100 μm for other types of cells) and adjustment of incident 

beam power. About 1500 cells were imaged for each cell type from each cell sample for each 

polarization direction. Then we apply image preprocessing to filter out non-cell images and 

calculate 38 image parameters extracted from each cell to characterize image texture patterns 

and classify the cells. We further randomly separate the cell image pairs into two sets of 

training and test data and apply our classification software based on the LIBSVM package to 

obtain the best SVM model with the highest value of the accuracy. 
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In Fig. 4-9, BE is the beam expander; WP is the half-wave plate; M is the mirror; ND 

means neutral density filters; FL means focusing lens; FC is the flow chamber; CL is the 

condenser lens; Ob is the objective; WF means 532nm wavelength filter; PBS is the 

polarizing beam splitter; TL is the tube lenses; BS is the beam splitter; PMT means 

photomultiplier; CCD is the camera recording either s- or p-polarized diffraction images. The 

axes of x and z are labeled by red lines.  

  

 

 

                      

 

 

 

 

4.2.2  Camera control and data acquisition 

  By calling the Application Program Interface (API) functions provided by the vendor of 

two CCD cameras (LU075M, Lumenera), we have developed an image data acquisition 

software to control the cameras and adjust camera settings such as exposure time, image 

signal gain, and the preview window for optic alignments to take two images simultaneously 

after receiving the external trigger signals produced by the PMT as shown in Fig. 4-9. The 

software will make a “beep” sound when it receives an external trigger to notify the users that 

Fig. 4-9  Top view of the p-DIFC system for acquisition of s- and  

p-polarized diffraction images 



48 

a pair of cell images is captured by the system. Fig. 4-10 shows the flow diagram of the 

software.  

 

 

 

 

 

 

 

 

 

After connecting the cameras to the system and setting the basic parameters for both 

cameras, the software will wait for the external triggering signals. When a trigger signal is 

received from the PMT, the system will save the images in the hard drive of the computer and 

make a “beep” sound. The images will be displayed with their intensity distribution. The 

image counter will add up one and compare with the target number of cells N. The software 

will terminate if the counter number equals N. In the initial version, the image acquisition 

software can capture one pair of cross-polarized diffraction images per second. Each paired 

image acquisition is implemented as a single process in the Windows Operating System (OS). 

A process cannot be activated until the previous one completes, which produces a delay or 

gap of no data acquisition in time after the initial camera triggering. If this issue cannot be 

Fig. 4-10 Flow diagram of the image acquisition 

software 
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corrected, many flowing cells would not be able measured due to the waiting gap. We have 

improved the software by implementing a multithreading mechanism which converts the 

entire process of imaging data acquisition into multiple threads. In this design, a single thread 

of execution is the smallest sequence of programmed instructions that can be managed by the 

OS. Multiple threads can be executed within the same process that shares the same resource 

such as memory. Each paired image data acquisition is assigned as one thread and the 

software can process multiple threads at the same time. A test of this multithreading design 

has yielded the results through multiple experiments and the maximum speed of paired image 

acquisition can reach a rate up to ten image pairs per second. And this speed can increase 

significantly with an upgrade on the computer hardware. 

  Another significant software improvement is to process pixel intensity information and 

present the detail of this information in real time. This functionality is very useful for 

adjustment of incident laser beam power to reduce the probabilities of acquiring 

underexposed or overexposed image data in subsequent acquisition because the dynamic 

ranges of the cameras are quite limited. For this purpose, investigators using the p-DIFC 

system can first acquire ten to twenty pairs of diffraction images for adjustment of the 

incident beam power. As each image pairs are continuously acquired, the image pixel 

intensity information is calculated and displayed on the main interface of the software in the 

form of the maximum pixel intensity, the minimum pixel intensity, the average pixel intensity, 

and the total number of saturated pixels. The real-time feedbacks of image pixel intensities 
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are not only helpful to adjust the beam power before starting the data acquisition but also 

useful to monitor the image quality during data acquisition.  

4.2.3  Data analysis 

  The first step to analyze the raw data is image preprocessing. The algorithm mentioned in 

3.1 is implemented in a Matlab program and able to filter out the 12-bit raw diffraction 

images J(z,y) into different categories. Only images of cells are kept for the next step. After 

converting the 12-bit images to 8-bit images, we calculate the GLCM parameters and the 

image intensities to acquire a parameter space. With the selected kernel function and certain 

combinations of parameters, SVM is able to create a feature space and classify cells with a 

higher accuracy than the parameter space. One can select the feature space according to its 

accuracy and save it as a training model. The basic flow of data processing in the p-DIFC 

method is demonstrated in Fig. 4-11.     

 

 

 

 

 

 

 

 

 



51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

Image parameters calculated from the GLCM algorithm and the image intensity are 

analyzed by another software developed in C#.NET. As shown in Fig. 4-12, the user can 

calculate the GLCM parameters and display any two of them in a scatter plot and two 

histogram plots. The statistical information is also provided including the mean value, the 

standard deviation, the maximum value, and the minimum value. This gives us an initial 

estimation if we can classify two types of cells in a parameter space. A SVM ranking 

function has been added recently. The user can rank 38 parameters in the order of the 

classification accuracy and compare the accuracy with the distribution in the histogram and 

the scatter plots. But according to our careful tests with many types of cells, not all 

parameters can be clearly distinguished on a scatter plot or multiple histograms. Some 

parameters which overlap each other on the scatter plots or histograms have a related high 

Fig. 4-11 Flow diagram of data processing in p-DIFC method 
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accuracy classified by SVM algorithm. This proves that the image parameters are not always 

linearly separable in the parameter space and not accurate enough to separate two types of 

cells.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Fig 4-13 shows the user interface of the SVM classification software which is also 

developed in C#.NET. After selecting the path of an Excel file containing the parameter 

values of diffraction images, the user is able to observe the details of experiment information 

and cell parameters. Four kernel functions mentioned in 3.3.2 are available in the software. 

One can change the fold of cross-validation n to improve the accuracy of classification. The 

default value of n is 5. Initially user can click a button to start the single parameter ranking 

with selected Kernel function. The software will call the function from LIBSVM [34] and 

return the accuracy (ACC) of the training with a single parameter. The ACCs for 38 

parameters are ranked and displayed in the “Result” panel. The user can test different 

Fig. 4-12   User interface of parameter analysis software 
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combinations of parameters according to the ACC and find the best model for classification. 

The information of training model mentioned in 3.3.1 is saved in a Text file, which can be 

reused to classify other data set.        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 4-13   User interface of SVM classification software 

  



 

 

CHAPTER 5  RESULTS AND DISCUSSION 

In this chapter the results of confocal imaging and 3D reconstruction will be presented to 

compare quantitatively the morphology parameters of different cell types for phenotyping 

study. Cross-polarized imaging of single cells has been carried out with the p-DIFC method 

and the results of measurement were used for classification study of the different cell types. 

With these results, we discuss the relations among the data acquired with different imaging 

measurements and their implications in development of a new method for cell assay and 

classification.  

 

5.1  Confocal imaging and 3D reconstruction 

  Confocal imaging of different types of cells has been performed followed by the image 

segmentation and the 3D reconstruction to quantitatively determine and compare their 3D 

morphology parameters, which also serve as the baseline data to gain the insight into 

differences in light diffraction patterns exhibited by their cross-polarized diffraction images.  

5.1.1 Morphology study of the Jurkat T and Ramos B cell lines 

We first selected the Jurkat T and Ramos B cell lines for confocal imaging and 3D 

reconstruction since these two cell lines are derived from human malignant lymphocytes 

which have been widely recognized to have indistinguishable morphology using conventional 

microscopy methods. Current methods for clarifying these two cell lines require the use of 
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different fluorescent antibody markers on the cell membrane. A total of 60 Ramos cells and 

45 Jurkat cells were imaged with the laser scanning microscope and their 3D morphology 

was reconstructed from the acquired image stack data with the software described in Chapter 

4. Fig. 5-1 presents the perspective views of reconstructed Ramos and Jurkat cell structures 

using different color hues to depict the three major intracellular organelles (cytoplasm, 

nucleus and mitochondria) with selected morphological parameters listed below each cell. By 

comparing these single cell images, one can clearly see that the cell morphology varies 

significantly even among those within the same cell type and thus the distributions of the 

quantitative parameters can be quite wide.  

 

 

 

 

 

 

 

   

 

 

 

Fig. 5-1   Perspective views of reconstructed 3D structures of three Ramos 

(A) and three Jurkat (B) cells. Three parameters at the bottoms for 

each cell are cell volume Vc, volume ratio of nucleus-to-cell Vrnc, 

and volume ratio of mitochondria-to-cell Vrmc.  
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A total of 29 morphology parameters were calculated to characterize 3D cell morphology. 

Table 5-1 provides 16 key parameters obtained with the in-house developed software to 

illustrate their major morphologic features and statistically significant differences. As 

expected, the mean values and distributions of these parameters exhibit high degree of 

similarity between Jurkat and Ramos cell lines in their surface area, volume, shape of the cell, 

and shape of the nucleus. The only statistically significant differences (p<0.05) observed is 

the nucleus-to-cell volume ratio Vrnc which is highlighted in Table 5-1. 

Table 5-1   Morphological parameters of Jurkat and Ramos cell lines 

 

Parameter 

 

Symbol 

 

Unit 

Mean Standard Deviation 
p 

(1)
 

Jurkat(n=45) 
(1)

 Ramos (n=60) 
(1)

 

Cell surface area 
(2)

 Sc m
2
 526.4162 521.3153 0.867 

Cell volume 
(3)

 Vc m
3
 663.7308 666.5296 0.962 

Cell surface to volume ratio  SVrc m
-1

 0.84950.168 0.84930.207 0.996 

Cell surface irregularity index 
(4)

  SIic m
-1/2
 201.728.5 199.720.6 0.678 

Average distance of cell membrane 

voxels to centroid 
<Rc>

 m 6.7972.14 7.1102.45 0.495 

Standard deviation of Rc Rc m 1.8410.721 2.0510.854 0.186 

Nuclear surface area Sn m
2
 425.5158 388.2130 0.187 

Nuclear volume Vn m
3
 407.8199 367.4185 0.285 

Nuclear surface irregularity index SIin m
-1/2

 206.842.1 204.328.9 0.716 

Mitochondrial surface area Sm m
2
 578.3803 485.5728 0.538 

Mitochondrial volume Vm m
3
 33.4038.6 32.134.8 0.853 

Mitochondrial surface to volume ratio SVrm m
-1

 13.563.80 12.482.84 0.100 

Mitochondrial surface irregularity index SIim m
-1/2

 731.3695 677.0550 0.656 

Nucleus-to-cell centroid distance  Dnc m 0.17600.053 0.15970.048 0.096 

Nucleus-to-cell volume ratio  Vrnc - 0.62800.126 0.54790.143 0.004 

Mitochondrion-to-cell volume ratio Vrmc - 0.05260.066 0.04840.055 0.662 

(1)
 n = number of imaged cells, p-values were obtained by a two-sample t-test method.  

(2)
 S = Nss0 with Ns as the number of voxels on the membrane of the organelle and s0 as the diagonal plane area of 

voxel. 

(3)
 V = Nvv0 with Nv as the number of voxels inside the organelle of interest and v0 as voxel volume.  

(4)
 SIi = Nsa0/(V)

1/2
 with a0 as the side length (=0.07m) of voxel. 
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To compare the morphology data of the two cell lines in details, we provide in Fig. 5-2 the 

histograms of Vrnc of the Jurkat and Ramos cells. It can be seen that the values of Vrnc of 

most Ramos cells are centered around the point of 0.6 while two peaks exist in the histogram 

of the Jurkat cells located at the values of around 0.5 and 0.7. Although the difference in the 

histogram distributions of Vrnc appears, the difference in cell volume and nucleus volume of 

Jurkat and Ramos cells are not statistically significant at all according to the p-values in 

Table 5-1. Therefore the only statistically significant difference among the morphologic 

parameters of the two cell lines can only be observed in Vrnc, which confirms the 

conventional view that microscopy study alone cannot have the capacity to distinguish the 

Jurkat and Ramos cells based on their morphology. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5-2   Histograms of nucleus-to-cell volume ratio for the Jurkat and Ramos 

cells. 
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5.1.2 Morphology study of the normal and cancerous prostate epithelial cells 

  To extend our morphology study to the epithelial cells, we have selected the normal and 

cancerous prostate cells of PCS and PC3 cells for confocal imaging and 3D reconstruction. In 

Fig. 5-3, we present the perspective views of the 3D structures of the prostate cells. Three 

parameters at the bottom of each cell are cell volume Vc, volume ratio of nucleus-to-cell Vrnc, 

and volume ratio of mitochondria-to-cell Vrmc. It can be observed directly from the image 

data that the major differences between PC3 and PCS cells are in the cell volume. The PC3 

cells are almost two times bigger than PCS in the cell volume, while the PCS cells have a 

larger volume ratio of mitochondria-to-cell than PC3.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 5-3  Perspective views of reconstructed 3D structures of three PC3 

(A) and PCS (B) cells. Three parameters at the bottoms for 

each cell are cell volume Vc, volume ratio of nucleus-to-cell 

Vrnc, and volume ratio of mitochondria-to-cell Vrmc.  
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Table 5-2 presents the values of the mean and the standard deviation of 17 key parameters 

with the p-values to test the statistical significance on the parameter difference between the 

two cell types. The morphology parameters show clearly that most statistically significant 

morphological differences are related to those of cell and nucleus.  

Table 5-2   Morphological parameters of PC3 and PCS cells 

 

Parameter 

 

Symbol 

 

Unit 

Mean Standard Deviation 
p 

(1)
 

PC3 (n=40) 
(1)

 PCS (n=38) 
(1)

 

Cell surface area 
(2)

 Sc m
2
 1135226 918.6229 7.0x10

-4
 

Cell volume 
(3)

 Vc m
3
 2116623 1543665 1.9x10

-4
 

Cell surface to volume ratio  SVrc m
-1

 0.56150.123 0.63860.134 0.011 

Cell surface irregularity index 
(4)

  SIic m
-1/2
 242.825.7 231.626.6 0.66 

Average distance of cell membrane 

voxels to centroid 
<Rc>

 m 8.7881.19 7.8811.015 1.0x10
-3

 

Standard deviation of Rc Rc m 2.2970.781 2.0020.657 0.076 

Nuclear surface area Sn m
2
 830.5231 665.9344 0.015 

Nuclear volume Vn m
3
 1022383 679.5379 1.7x10

-4
 

Nuclear surface to volume ratio SVrn m
-1
 0.84510.121 1.0180.175 2.5x10

-6
 

Nuclear surface irregularity index SIin m
-1/2

 254.233.4 245.362.4 0.43 

Mitochondrial surface area Sm m
2
 546.9309 629.4347 0.27 

Mitochondrial volume Vm m
3
 160.7108 148.895.7 0.61 

Mitochondrial surface to volume ratio SVrm m
-1

 4.2721.93 4.9931.59 0.077 

Mitochondrial surface irregularity 

index 
SIim m

-1/2
 441.2138 513.3136 0.023 

Nucleus-to-cell centroid distance  Dnc m 0.14000.0477 0.15520.0475 0.12 

Nucleus-to-cell volume ratio  Vrnc - 0.49330.135 0.43510.128 0.054 

Mitochondrion-to-cell volume ratio Vrmc - 0.07950.053 0.10560.0739 0.076 

(1)
 n = number of imaged cells, p-values were obtained by a two-sample t-test method.  

(2)
 S = Nss0 with Ns as the number of voxels on the membrane of the organelle and s0 as the diagonal plane area of 

voxel. 

(3)
 V = Nvv0 with Nv as the number of voxels inside the organelle of interest and v0 as voxel volume.  

(4)
 SIi = Nsa0/(V)

1/2
 with a0 as the side length (=0.07m) of voxel. 

 

Four scatter plots of the imaged prostate cells with the morphology parameters of p < 0.05 

are provided in Fig.5-4 to compare their distributions. Although most of cells of the two types 
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overlap each other in the scatter plots, the PC3 cells cluster with smaller spreads in values of 

the nuclear and cellular parameters than those of the PCS cells, which is consistent with the 

standard deviations of most parameters in Table 5-2. In addition the PC3 cells have 

significantly larger cellular and nuclear volumes than PCS cells (also can be observed from 

the perspective views of the 3D structures of the prostate cells). It provides the insight on the 

ability to separate PC3 and PCS cells by the p-DIFC method.  

 

 

 

 

 

 

 

 

   

 

 

Four pairs of the 3D morphologic parameters plotted in Fig. 5-4 are picked from the Table 

5-2 because their p-values are less than 0.05 and thus statistically different.  However in 

these scatter plots, one cannot find a separating line as a clear margin in the 2D parameter 

space to distinguish the two types of the prostate cells despite their differences are indicated 

Fig. 5-4   The scatter plots of PC3 and PCS with 4 combinations of 3D  

parameters: (a) Vc vs Sc; (b) Vn vs Sn; (c) <Rc> vs SVrc; (d) 

SIim vs SVrn. 

  



61 

by the p-values. Most of the PC3 cells represented by the symbols of red dots and the PCS 

cells represented by the symbols of green dots in plots are overlapped. Even in the scatter plot 

of SIim versus SVrn which has the fewest overlapped symbols of the two cell types, one could 

not classify these two cells. Obviously, it is very difficult to achieve classifications of high 

accuracy directly in the parameter space of 3D morphology even for cells of different types 

with relatively large differences. 

5.1.3 Morphology study of the primary CD4+ and CD8+ T lymphocytes  

  A total of 59 CD4+ and 44 CD8+ primary T lymphocytes extracted from the human spleen 

tissues have been imaged with the confocal microscope and their morphology has been 

quantified through 3D reconstruction. Values of 17 selected 3D morphology parameters are 

listed in Table 5-3. Compared with the human lymphocytes derived from Jurkat and Ramos 

cells, the volumes of the primary T cells given in Table 5-3 are much smaller, which reveals a 

very interesting morphologic difference between the cultured and primary cells of the same 

origin. Furthermore, the marked differences illustrate clearly the effect of environment on the 

cell structure and phenotype development.  

 

 

 

 

 

 



62 

Table 5-3   Morphological parameters of CD4+ and CD8+ T lymphocytes 

 

Parameter 

 

Symbol 

 

Unit 

Mean Standard Deviation 
p 

(1)
 

CD8+ T(n=44) 
(1)

 CD4+ T(n=59) 
(1)

 

Cell surface area 
(2)

 Sc m
2
 231.166.3 186.062.4 0.036 

Cell volume 
(3)

 Vc m
3
 92.9018.0 88.8219.5 0.282 

Cell surface to volume ratio  SVrc m
-1

 2.3410.71 2.2371.00 0.543 

Cell surface irregularity index 
(4)

  SIic m
-1/2
 306.641.6 252.542.4 3.85x10

-9 

Average distance of cell membrane 

voxels to centroid 
<Rc>

 m 1.45 3.5581.30 0.085 

Standard deviation of Rc Rc m 1.2080.410 0.92900.217 2.20x10
-5 

Nuclear surface area Sn m
2
 196.769.6 166.658.0 0.019 

Nuclear volume Vn m
3
 72.5612.1 65.0214.0 0.005 

Nuclear surface to volume ratio SVrn m
-1
 3.2540.81 4.0321.61 0.004 

Nuclear surface irregularity index SIin m
-1/2

 267.389.9 294.777.1 0.099 

Mitochondrial surface area Sm m
2
 22.7951.6 22.9394.1 0.933 

Mitochondrial volume Vm m
3
 1.110.489 0.911.12 0.270 

Mitochondrial surface to volume ratio SVrm m
-1

 30.3345.29 30.56134.4 0.991 

Mitochondrial surface irregularity index SIim m
-1/2

 13321059 494.41020 9.88x10
-5 

Nucleus-to-cell centroid distance  Dnc m 0.22350.118 0.25920.135 0.164 

Nucleus-to-cell volume ratio  Vrnc - 0.79010.097 0.74750.142 0.090 

Mitochondrion-to-cell volume ratio Vrmc - 0.01110.008 0.01060.006 0.890 

(1)
 n = number of imaged cells, p-values were obtained by a two-sample t-test method.  

(2)
 S = Nss0 with Ns as the number of voxels on the membrane of the organelle and s0 as the diagonal plane area of 

voxel. 

(3)
 V = Nvv0 with Nv as the number of voxels inside the organelle of interest and v0 as voxel volume.  

(4)
 SIi = Nsa0/(V)

1/2
 with a0 as the side length (=0.04m) of voxel. 

 

  Fig 5-5 presents two sets of CD4+ and CD8+ T lymphocytes with perspective views of the 

reconstructed 3D structure for each of the three cells in each set. Careful analysis of the data 

in Table 5-3 shows that most of the significant differences are related to the cell nucleus. The 

ratio of nuclear volume to cellular volume is very high (about 80%), which is consistent with 

the observations by hematologists leading to some differences in the shape of the cell. These 

results provide a useful insight on the relation between the structures and functions for the T 

lymphocytes. For instance, it may suggest that CD8+ T cells, which can be activated to 
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cytotoxic T cells, may have more activity therefore require significantly larger nuclear 

volumes to express molecules for performing their functions. 

 

 

 

 

 

 

 

 

 

 

 

To clearly visualize and compare the morphological differences among six different cell 

types, we present in Fig. 5-6, Fig. 5-7, and Fig. 5-8 the scatter plots of selected morphology 

parameters of the cells investigated with the confocal imaging-based morphology 

quantification. In Fig. 5-6, Sc is the surface area of the cell and Vc is the volume of the cell. 

Although CD4+ and CD8+ T lymphocytes are overlapped with each other, they are 

well-separated from other cells at lower left corner, which indicates their cells’ smallest 

surface area and volume. Jurkat and Ramos cell lines are also overlapped in Sc and Vc. But 

their positions are above the group of CD4+ and CD8+ T lymphocytes and under PC3 and 

Fig. 5-5   Perspective views of reconstructed 3D structures of 

three CD4+ (A) and three CD8+ (B) T lymphocytes. 

Three parameters at the bottoms for each cell are 

cell volume Vc, volume ratio of nucleus-to-cell Vrnc, 

and volume ratio of mitochondria-to-cell Vrmc.  
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PCS cells. The groups of PC3 and PCS cells are widely spread in Vc and Sc and they are 

located on the upper right of the diagnostic line in Fig 5-6. It also shows that the cancer cell 

lines of human lymphocytes are much larger than primary human lymphocytes and that 

prostate cancer cells are larger than prostate normal cells. This allows us to conclude that 

although we are not able to distinguish cells within the same cell category by 3D morphology, 

we still have the ability to classify cells across the phenotypes and separate the cancerous 

lymphocytes from normal lymphocytes. 

 

 

 

 

 

 

 

 

In Fig. 5-7, Sn is the surface area of the nucleus and Vn is the volume of the nucleus. CD4+ 

and CD8+ T lymphocytes have the smallest Vn and Sn. Meanwhile their ratios of Vc and Sc 

are smaller than other types of cells. We can easily distinguish CD4+ and CD8+ T 

lymphocytes from other cells because they are grouped at the lower left corner in the plot. 

PC3 and PCS make up the broad band that stretches from the upper right corner down 

Fig. 5-6   Scatter plot of Vc versus Sc for the 6 cell lines or types 

as noted in the legends. 
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through the lower left corner above the group of CD4+ and CD8+ T lymphocytes. Jurkat and 

Ramos cells appear in the lower left parts of the scatter plot.      

 

 

 

 

 

 

 

 

 

  

 

   

 

 

 

 

Scatter plot of volume of the mitochondria Vm versus surface area of the mitochondria Sm 

in Fig. 5-8 shows an interesting finding that most CD4+ and CD8+ T lymphocytes have the 

same ratio of Vm and Sm as Jurkat and Ramos cancer cell lines. Their ratios are significantly 

Fig. 5-7   Scatter plot of Vn versus Sn for the 6 cell lines or types as 

noted in the legends. 

  

Fig. 5-8  Scatter plot of Vm versus Sm for the 6 cell lines or types as 

noted in the legends. 
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different from the ratios of prostate cells. This provides strong evidence that it is possible to 

distinguish white blood cells from prostate epithelial cells by morphology assay.  

 

                          

5.2  Results of p-DIFC measurement 

We have performed multiple diffraction imaging measurements on the pairs of the Jurkat 

versus Ramos cells and the PC3 versus PCS cells to investigate cell classification by the 

p-DIFC method between cells of high and moderate similarity in their 3D morphology as 

discussed in the previous section. Cross-polarized diffraction images of CD4+ and CD8+ T 

lymphocytes have also been acquired recently which are still under processing and the results 

will be represented elsewhere. Fig. 5-9 shows selected pairs of the cross-polarized diffraction 

images acquired from the Jurkat versus the Ramos cells and the PC3 versus the PCS cells. 

The size of speckles in PC3 and PCS images can be seen to be slightly larger than those in 

Jurkat and Ramos images. But the total amounts of speckles in Jurkat and Ramos images are 

less than those in PC3 and PCS images. With the naked eyes, one is unable to quantitatively 

tell the difference among these diffraction images between Jurkat and Ramos cells as well as 

between PC3 and PCS cells. To quantitatively extract image texture information, we have 

applied the GLCM based image processing software as described in Chapter 4 to obtain a 

total of 38 parameters from each diffraction image pair for each imaged cell, and these 

parameters were assembled in a feature vector in different combinations to represent this cell 

in a multidimensional feature space. The SVM algorithm was applied to statistically evaluate 
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the feature vectors with the training data and obtain an optimized model for accurate cell 

classification.  

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5-9   Selected pairs of polarization-resolved diffraction images acquired from Jurkat and Ramos cells,    

and PC3 and PCS cells. Each image is labeled with the cell type, polarization direction of incident 

beam, polarization direction of scattered light, maximum, average, and minimum pixel intensities of 

the 12-bit diffraction image. 
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5.2.1  p-DIFC measurement of Jurkat T and Ramos B cell lines 

After the acquisition and pre-processing of the cross-polarized diffraction image pair data, 

the image data deemed as those of intact cells were further processed by the GLCM based 

software to extract 38 image parameters for classification study. Two p-DIFC measurements 

of the Jurkat and Ramos cells have been carried out to examine the repeatability of the data 

acquisition and the result. After the acquisition and image processing, the diffraction image 

pair data were divided into a training data set and a test data set for each measurement. Table 

5-4 lists the numbers of imaged cells or diffraction image pairs in the training and test data 

sets and the best accuracy of classification for Jurkat and Ramos cells using the SVM 

algorithm and optimized SVM models.  

From the results presented in Table 5-4, one can see that polynomial kernel function has 

the best performance with only three to seven image parameters to form an optimized SVM 

model. Among the three polarization directions of the incident laser beam, horizontal and 

vertical polarizations provide the best accuracies with both above 97% in the data acquired in 

both measurements. In the data of measurement #1, the classification accuracy of horizontal 

polarization can reach 100%. With these results, a conclusion can be made that the accurate 

classification of the Jurkat and Ramos cells can be achieved robustly under the conditions of 

using the linear kernel function for the optimized SVM model and the vertical or the 

horizontal for the incident beam polarization.  
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Table 5-4   Experimental parameters and classification results of Jurkat and Ramos cell lines 

 
Measurement 
sequence 

Incident  
polarization  

Cell 
type 

Ntot 
(1)

 
Ntra 
(1)

 
Ntes 
(1)

 
Aav (%)  Kernel 

function 
and M

(2)
 of 

best SVM 
model 

training  test  

 
 
#1 

vertical Jurkat 328 200 128 99.8 100 Polynomial 
Ramos 253 200 53 3 

horizontal Jurkat 1374 400 974 100 99.4 Polynomial 
Ramos 1046 400 646 4 

45
o
  Jurkat 606 400 206 99.3 99.3 Polynomial 

 Ramos 899 400 499 7 

 
 
 
#2 

vertical Jurkat 1630 1000 630 98.3 97.8 Polynomial 
Ramos 1277 1000 277 3 

horizontal  Jurkat 1577 1000 577 97.9 98.1 Polynomial 
Ramos 1885 1000 885 4 

45
o
  Jurkat 899 700 199 81.4 83.8 Polynomial 

 Ramos 1530 700 830 7 
 

(1)  Ntot = number of diffraction image pairs of viable cells for extraction of 38 image parameters; Ntra = number of diffraction 

image pairs in the training data set; Ntes = number of diffraction image pairs in the test data set; Ntes = Ntot - Ntra. 

(2)  M is the number of image parameters used in the SVM model for classification.   

  Two parameters p-COR, and p-CON from the best training model are selected to verify the 

classification of data from the measurement #1 with the incident polarization of 45 degree. 

Fig. 5-10 shows the 2D scatter plot and histograms of them and one can find that Jurkat and 

Ramos cells can be separated in two groups in the scatter plot with these two parameters.  

 

 

 

 

 

 

 

 

Fig.5-10  2 D scatter plot and histograms of selected parameters for Ramos and Jurkat cell lines from 

sequence #1. The polarization of incident beam is 45 degree. p-COR: correlation of 

p-polarized images; p-CON: contrast of p-polarized images. 
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  Another parameter p-DIS is also added from the best training model to form a 3D space to 

verify the classification. As shown in Fig. 5-11 the distribution of red dot symbols (Ramos) 

and blue square symbols (Jurkat) in the 3D parameter space are separated well only in the 2D 

domains of p-COR and p-CON. About eight Ramos cells are overlapped with Jurkat cells in 

the axis of p-DIS. But the accuracy is still quite high, which can be significantly improved to 

the values shown in Table 5-4 by mapping the distribution of the cells in a high-dimensional 

feature space defined by the training data and the kernel function used in the SVM model. 

Therefore, classification between the Jurkat and Ramos cells can be achieved relatively well 

in the parameter space which can be further improved in the feature space defined by the 

SVM algorithm using an optimized model as shown in Fig. 5-12.  

 

 

 

 

 

 

 

 

 

 

Fig.5-11  3D scatter plot of selected parameters for Ramos and 

Jurkat cell lines from sequence #1. The polarization of 

incident beam is 45 degree. p-DIS: dissimilarity of 

p-polarized images; p-COR: correlation of p-polarized 

images; p-CON: contrast of p-polarized images. 

  



71 

 

 

 

 

 

 

 

 

 

 

 

5.2.2  p-DIFC measurement of the normal and cancerous prostate epithelial cells 

  In the previous study, we have performed the p-DIFC based classification study of the 

Jurkat T and Ramos B cells which have been shown to have highly similar morphology 

through the confocal imaging. Both of the Jurkat and Ramos cells are of white blood cell 

origin and are suspension cells. To fully explore the potentials of the p-DIFC method in cell 

assay and classification, we chose two epithelial cells derived from human prostate tissues 

with the cancer cell line of PC3 and normal cell type of PCS. The study of these two cell 

types not only provide an interesting contrast among the phenotypes of different tissue 

Fig.5-12  The scatter plots of training data with values of classifier F versus the top two ranked GLCM  

parameters used by the best SVM model established for: (a) data acquired in sequence #1 with 

45 degree of incident beam; p-COR: correlation of p-polarized images; p-CON: contrast of 

p-polarized images; (b) data acquired in sequence #2 with 45 degree polarization; s-DEN: 

difference entropy of s-polarized images; s-DIS: dissimilarity of s-polarized images. The cells 

with F > 0 are classified by the SVM model as Jurkat cells and those with F < 0 as Ramos cells. 

The values of M, kernel function and Aav of the best SVM model are labeled. 
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origins but also have the practical importance in future applications of detecting circulating 

tumor cells in peripheral blood samples.   

Three measurements have been carried out on the two prostate cell types in different weeks. 

Table 5-5 provides the number of image pairs acquired and processed in the training and test 

data sets for PC3 and PCS cells in different measurements and corresponding results of 

classification with the best SVM models. From this table, one can observe that both 

Polynomial and Linear kernel functions perform well for classification of the two prostate 

cell types in the cases of horizontal and vertical polarization for the incident laser beam, 

which is similar as the result obtained from Jurkat and Ramos cells in comparison the case of 

45
o
 polarization.  In data of measurement #2, the average accuracy for both training and test 

data of the incident beam as horizontal polarization are 100%.  

 

Table 5-5   Experimental parameters and classification results of PC3 and PCS cells 

 
Measurement  
Sequence 

Incident  
polarization  

Cell 
type 

Ntot 
(1) 

Ntra 
(1)

 
Ntes 

(1)
 Aav (%)  Kernel 

function and 
M

(2)
 of best 

SVM model 

training  test  

 
 
#1 

vertical PC3 716 500 216 99.1 97.1 Linear 
PCS 668 500 168 10 

horizontal PC3 681 500 181 93.7 84.5 Polynomial 
PCS 623 500 123 10 

45
o
  PC3 770 300 470 80.7 64.8 Polynomial 

 PCS 378 300 78 10 

 
 
 
#2 

vertical PC3 998 800 198 76.9 74.8 Polynomial 
PCS 1393 800 593 13 

horizontal  PC3 890 400 490 100 100 Linear 
PCS 578 400 178 6 

45
o
  PC3 897 600 297 76.3 78.2 RBF 

 PCS 758 600 158 5 

 
 
 
#3 

vertical PC3 1130 800 330 93.5 93.0 Linear 
PCS 1006 800 206 9 

horizontal  PC3 1104 800 304 99.5 99.5 Polynomial 
PCS 1337 800 537 14 

45
o
  PC3 1137 800 337 86.0 89.0 Linear 

 PCS 1092 800 292 1 
 

(1)  Ntot = number of diffraction image pairs of viable cells for extraction of 38 image parameters; Ntra = number of diffraction 

image pairs in the training data set; Ntes = number of diffraction image pairs in the test data set; Ntes =  Ntot - Ntra. 

(2)  M is the number of image parameters used in the SVM model for classification.   
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We analyzed the classification result using two parameters in 2D parameter space for data 

of measurement # 1 as shown in Fig. 5-13. The image parameters are selected according to 

their single-parameter rankings determined by the SVM based classification. One can find 

from this figure that certain amount of PC3 and PCS cells are overlapped using only these 

two parameters. 

 

 

 

 

   

   

 

A 3D scatter plot using top 3 parameters ranked by the SVM is in Fig. 5-14, which 

demonstrates clearly that the result of direct cell classification with these parameters is not 

satisfactory in the parameter space and most PC3 and PCS cells are mixed even using the 

three parameters ranked as the three best single parameters for classification. These results 

provide clear evidences that the SVM algorithm is more effective to classify cells. SVM 

improves classification by using a kernel function to map the image parameters into a higher 

dimensional feature space. Since the kernel functions can be nonlinear, the mapping provides 

a robust approach for classification with the GLCM based image parameters.   

 

Fig.5-13  2D scatter plot and histograms of selected parameters for PC3 and PCS cells from sequence 

#1. The polarization of incident beam is vertical. p-DIS: dissimilarity of p-polarized 

images; p-SAV: sum of the average of p-polarized images. 
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To demonstrate the effectiveness of the SVM algorithm, scatter plots of the training result 

is presented in Fig.5-15 for the cell classification of sequence #1-vertical polarization and 

sequence #3 with the best SVM model. In Fig. 5-15 (a), the best two GLCM parameters of 

the dissimilarity and the sum average extracted from p-polarized images yield respectively 

the classification accuracy Aav of 91.0% and 87.7% for the training data, which are 

significantly smaller than the accuracy of 99.1% from the best SVM model of M=10 

parameters and the linear kernel function. Similar improvement in classification can be 

observed in Fig. 5-15 (b). The plots clearly show that the SVM algorithm provides a powerful 

tool to improve cell classification with extracted image parameters by mapping them from the 

parameter space into the feature space using the kernel function. With these results, a 

Fig.5-14   3D scatter plot of selected parameters for PC3 and PCS cells from sequence 

#1. The polarization of incident beam is vertical. p-DIS: dissimilarity of 

p-polarized images; p-SAV: sum of the average of p-polarized images; 

p-MEA: mean of p-polarized images . 
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conclusion can be made that the accurate classification of PC3 and PCS cells can be achieved 

robustly using either polynomial or linear kernel function for the SVM model and the vertical 

or horizontal for the incident beam polarization. The best overall results of Aav for classifying 

PC3 and PCS cells can be obtained with the linear kernel function and a feature vector of six 

parameters from the diffraction image pairs acquired with the horizontal beam polarization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5-15   The scatter plots of training data with values of classifier F versus the top two 

ranked GLCM parameters used by the best SVM model established for: (a) data 

acquired in sequence #1 with vertical incident beam polarization; p-DIS: 

dissimilarity of p-polarized images, p-SAV: sum average of p-polarized images; (b) 

data acquired in sequence #3 with horizontal polarization; s-DEN: difference 

entropy of s-polarized images; s-DIS: dissimilarity of s-polarized images. The cells 

with F > 0 are classified by the SVM model as PC3 cells and those with F < 0 as PCS 

cells. The values of M, kernel function and Aav of the best SVM model are labeled. 

. 
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  The results in Fig.5-16 were obtained by performing SVM classification with four different 

kernel functions in the training data sets of Jurkat and Ramos cells with feature vectors 

constructed by the image parameters sequenced according to their rankings. The data were 

acquired from the first sample set with a vertically polarized incident laser beam. Linear and 

polynomial kernel functions have the best performance and they both have a very high 

accuracy with only a few parameters. But the accuracy of polynomial kernel function drops 

rapidly when Nmax>25. Sigmoid kernel function has the worst performance. Its highest 

accuracy is around 75%. 

 

 

 

 

Fig.5-16  The averaged accuracy Aav versus the maximum number of image  

parameters in a feature vector Nmax for Jurkat and Ramos classification.  
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The results in Fig.5-17 were obtained by performing SVM classification for PC3 and PCS 

cells with four different kernel functions in the training data set with feature vectors 

constructed by the image parameters sequenced according to their rankings. The data were 

acquired from the sequence #2 with a horizontal polarized incident laser beam. Polynomial 

and linear kernel functions have the best performance again. Different from Fig. 5-16, there 

are some build-up areas for four kernel functions. Both linear and polynomial kernel 

functions have the best accuracy when Nmax>6. And the accuracy of polynomial kernel 

functions drops when Nmax>25. Sigmoid kernel function still has the worst performance.   

 

Fig.5-17   The averaged accuracy Aav versus the maximum number of image  

parameters in a feature vector Nmax for PC3 and PCS classification.  
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5.3  Discussion 

  T and B subpopulations of lymphocytes have been widely deemed as morphologically 

indistinguishable and can only be separated by the fluorescent surface marker [16], which 

agrees with the quantitative results of 3D morphological measurement for Jurkat and Ramos 

cells. Using the p-DIFC method, an optimized set of diffraction image parameters performs 

as the “fingerprints” encoded by the 3D morphological traits of the cells and provides high 

accuracy of classification. Therefore the p-DIFC method is capable to distinguish T and B 

subpopulations of lymphocytes. Although PC3 and PCS cells are significantly different in the 

size of cell and nuclear according to Table 5-2, accurate classification via statistical 

distribution for them cannot be achieved. As shown in Fig. 5-4, considerable overlaps exist in 

the distribution of the cellular and nuclear volume and surface area. Hence the differences in 

morphologic parameters of single cells cannot serve as effective markers for the detection of 

prostatic carcinoma cells. But PC3 cells can be accurately distinguished from PCS cells with 

the cross-polarized diffraction image pairs acquired rapidly with the p-DIFC method. 

  The mechanism underlying the ability of p-DIFC to distinguish the two different types of 

cells may be traced to the morphology of a cell in terms of its refractive index distribution. 

Through imaging, the difference in the intracellular refractive index distribution can be 

reflected by dissimilarity in the diffraction patterns quantified by the image parameters of 

texture and intensity. Therefore diffraction image parameters can serve as the morphologic 

fingerprints of the cell impressed by the coherent EM wavefields of the incident laser beam. 

Although these parameters from diffraction images correlate strongly with the cell 



79 

morphology, they are formed through very complex interactions of the incident EM 

wavefields with the molecules inside the cell. The actual intracellular distribution refractive 

index is still unknown, thus the detailed relations between the texture parameters extracted 

from a pair of 2D cross-polarized diffraction images and 3D cell morphology remains to be 

discovered. The results presented in this dissertation still provide strong evidences that the 

p-DIFC method is capable to establish an empirical approach for accurate classification of T 

lymphocytes and B lymphocytes as well as cancer epithelial cells and cancer cells. With the 

powerful machine learning application such as SVM, the diffraction image data is converted 

into a multidimensional feature space defined by the training data and optimized kernel 

functions for significantly improving the accuracy of classification as shown in Fig. 5-12.  

   The examination of the data for PC3 and PCS cells also proves that the scattering 

efficiency and the distribution of scattered light intensity between the two cross-polarized 

diffraction images vary dramatically among the three polarization directions of the incident 

beam, which can also be observed in the values of Aav in Table 5-5. This data clearly 

indicates that the diffraction image parameters carry rich information on intracellular 

biomolecules in terms of their ability to polarize in the wavefields of the incident beam. As a 

consequence the p-DIFC method’s capability to accurately separate two cell types without the 

need of extraneous labeling relies not only on the 3D morphology but also on the molecular 

response to the incident wavefields. Among three incident polarization direction, 45
o
 tends to 

produce smaller values of Aav for each of the three measurements. Similar results have been 

observed in Table 5-4 for Jurkat and Ramos cells. The reduction of Aav with polarization at 
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45
 o
 can be explained as following considerations. If incident beam is propagating along the 

z-axis with polarization at 45
 o
, the intracellular molecules can induce dipoles to oscillate 

along any direction within the x-y plane (The coordinate is defined in Fig. 4-9). The 

probability of inducing molecular dipoles along the horizontal direction of x-axis is the same 

as the one along the vertical direction of the y-axis, which reduces the selectivity of the 

p-DIFC method to contrast the differences among cells with different types of molecular 

response to the incident wavefields. The cross-polarized diffraction images in Fig.5-9 also 

verify this explanation although the image number is limited.  

 



 

 

 

CHAPTER 6   SUMMARY 

  The research projects described in this dissertation provide quantitative results of 

investigations on 3D morphology among six types of human cells of different origins of 

tissues. More importantly, the dissertation research focuses on the exploration of a new 

approach within the platform of flow cytometry technology through imaging of highly 

coherent scattered light for label-free cell assay and classification. 

  The morphology investigations have been carried out with confocal microscopy to acquire 

image stack data of single cells and perform 3D reconstruction by a Matlab-based software 

for segmentation and interpolation. A total of 29 morphology parameters related to the cell, 

the nucleus, and the mitochondria were calculated for quantitative analysis and comparison 

among different phenotypes on the basis of the two-samples t-test.  

Multiple software components have been developed through this dissertation research to 

improve an experimental system to study the potentials of the p-DIFC method for rapid 

acquisition of cross-polarized diffraction image pairs from single cells excited by a linearly 

polarized laser beam. The speed of image acquisition has been improved from less than 1 

image pair per second to about 10 image pairs per second by applying a multi-threading 

mechanism in the camera control software module. Image preprocessing has also been 

automated with an in-house developed software component to increase the speed of image 

data analysis after data acquisitions. An existing GLCM algorithm has been implemented into 
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the image processing software to obtain a total of 38 image texture and intensity parameters 

for each imaged cell to quantify the diffraction patterns by the cell. To perform an automated 

cell classification, a software has been developed using the SVM algorithm to map the image 

parameters into the feature space formed by the training data of the cross-polarized 

diffraction image pairs.  

  The cells that have been investigated include Jurkat T cell lines, Ramos B cell lines, CD4+ 

T lymphocytes, CD8+ T lymphocytes, normal prostate epithelial cells, and cancerous prostate 

epithelial cells. A careful morphology study on the Jurkat T and Ramos B cell lines showed 

that their 3D parameters are highly similar except the nucleus-to-cell volume ratio and 

therefore they are indistinguishable in morphology by the traditional microscopy. But using 

p-DIFC method, accurate classification can be achieved with the accuracy ranging from 97% 

to 100% with optimized SVM models consisting of the polynomial kernel function and 4 

GLCM image parameters. These results provide strong evidences that by detecting the 

intracellular refractive index distribution the p-DIFC approach is capable of detecting the 

subtle morphologic differences that are difficult to quantify by the traditional microscopy 

measurement.  

The morphology study on the normal and cancerous prostate epithelial cells shows that the 

cancerous prostate epithelial cells tend to have larger sizes in the cell and nucleus than the 

normal prostate epithelial cells. These differences are quite obvious in the statistical analysis 

of the mean value and the standard deviation. Still the scatter plots of those parameters with 

p-values less than 0.05 demonstrate that morphology parameters alone can hardly be used for 
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effective classification of the two cell types. The p-DIFC measurement has been applied on 

the prostate epithelial cells, and it has been shown that accurate classification of the two cell 

types can also be achieved with the accuracies ranging from 97% to 100% using optimized 

SVM models of either linear or polynomial kernel functions and up to 10 GLCM image 

parameters. These results prove again that the p-DIFC method has the ability to distinguish 

between the two types of cells, which have larger morphologic differences in comparison to 

the Jurkat and Ramos cells.  

We have also carried out the morphology study of primary human CD4+ and CD8+ T 

lymphocytes extracted from spleen tissues and the preliminary measurement of the 

cross-polarized diffraction images (not included in this dissertation). Based on the p-values, 

the major difference between these two T cell subtypes lies in the volume of the nucleus in 

which the CD8+ T lymphocytes have a larger volume on average. The diffraction images 

acquired with the CD4+ and CD8+ T lymphocytes sorted from the extracted splenocytes 

shows more noises and larger variations in diffraction patterns as compared with the Jurkat 

and Ramos cells. A study is underway to develop improved image analysis algorithms that 

would allow for the separation of different pattern types from the acquired data and results 

will be reported elsewhere.   

  With the 3D parameters, we were able to evaluate the morphologic differences among the 

six phenotypes of prostate epithelial cells, cell lines derived from lymphocytes, and primary 

lymphocytes for the first time. By pooling the morphologic parameters of all of the cells 

imaged by the confocal microscopy method, the cell volume and nuclear volume of the T 
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lymphocytes cell lines can be observed to be much larger than those of primary T 

lymphocytes, which can be used to understand the difficulty in analyzing the diffraction 

image data acquired with primary T cells. Similar differences are found between the normal 

and cancerous prostate epithelial cells in which the formers tend to have smaller cell and 

nuclear sizes than the cancer cell line. These findings provide insights on the structural 

differences among the cell types and a basis to understand the ability of p-DIFC method for 

morphology based cell classification. Another significant finding of this dissertation research 

is the statistically significant difference in the size of nucleus between CD4+ and CD8+ T 

lymphocytes, which could be attributed to their distinct functions after activation.  

With the cross-polarized diffraction image data, the p-DIFC method has been shown to 

have the ability to accurately classify the Jurkat T cell line from the Ramos B cell line.  

Their morphology was quantified to be highly similar and cannot be distinguished without 

staining with different CD markers. The similar measurements and classification studies on 

the two types of cancerous and normal prostate epithelial cells have also demonstrated the 

ability of the p-DIFC method to accurately differentiate them from the cross-polarized 

diffraction image data. These results lead to the conclusion that the p-DIFC method has 

significant potential to be developed into a rapid and label-free method for cell assay and 

morphology based classification to discriminate white blood cells and epithelial cells of both 

high similarity and moderate similarity in their morphology.   

We should note that the p-DIFC method requires significant improvement before it can be 

established as an effective tool for cell assay and phenotyping. Based on the results of this 



85 

dissertation research, it becomes clear that one of the research tasks of high priority for future 

improvement is to prove and establish quantitative relations between the 3D cell morphologic 

parameters and the diffraction pattern features of the diffraction image texture parameters. 

Previously, numerical analysis has been performed by our research group on the effect of the 

nuclear and mitochondrial morphology on the patterns of diffraction images with 

finite-difference-time-domain (FDTD) and discrete-dipole-approximation (DDA) models of 

light scattering [23,45]. The simulation results indicate that the difference in the nuclear 

volume or the volume ratio of nucleus-to-cell can lead to obvious changes in the GLCM 

parameters extracted from the diffraction images. However, the correlations of the changes 

between the nuclear morphology and GLCM parameters are convoluted among the volume, 

shape, and values of refractive index heterogeneity of the organelles inside the cell. A 

detailed and large-scale numerical study needs to be pursued in the near future to extract 

quantitative relations which can be used to develop a comprehensive method for extracting 

3D morphology information from the diffraction image data and understand the morphology 

foundations of the p-DIFC method. Another issue is related to the application of the p-DIFC 

method to classify different types of cells in multiple measurements. For example, its 

capability of distinguishing three or more than three types of cells remains unknown and 

needs to be carefully examined. Moreover, current texture analysis algorithm GLCM requires 

significant computational cost for extraction of image parameters which are very sensitive to 

the minor changes in the optic settings due to ambient light noise and variation of the cell 

sample conditions. Therefore better algorithms for processing and characterization of image 
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textures needs to be developed for increasing the speed of calculation and reducing the 

sensitivity to noise. Hardware-wise, the current p-DIFC system needs to be significantly 

improved as a semi-automatic system without too many manual control and alignment 

requirements and the system must increase the repeatability of data acquisition and 

subsequent analysis.  
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APPENDIX A DIFFRACTION IMAGE PARAMETERS 

DEFINATION 

  There are 19 parameters for each image including 17 GLCM parameters and 2 intensity 

parameters. The parameter names, symbol, and their definition equation is in the following 

table.  

Parameter Symbol Definition Equation 
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0

1 1
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Mean MEA 1 1
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APPENDIX B PROTOCOL OF DETACHING CELLS 

  This protocol is used for detaching cells from the culture plates. PC3 and PCS cells are 

attached to the plate.  

1. Aliquot out enough media and warm up the media in the 37 degree water bath. 

2. When the media is warmed up, get ready of the DPBS and Trypsin-EDTA. 

3. Take out the plate to be detached from the incubator, and suck out the media. 

4. Add 8-10 ml of DPBS to the plate to wash once (removing the FBS in the media), and then 

suck out the DPBS. 

5. Add 2ml of Trypsin-EDTA to each plate, and put into the incubator; let it incubate for 3-5 

minutes. 

6. During that 3-5 minutes, take the plate out, tap the plate from the side to break up the cell 

clusters, and watch under the microscope to make sure cells are detached. 

7. In the hood, add 5ml of the media to the plate and pipette up and down several times to 

break the cell clusters and collect the cells to the 15 ml tube. 

8. Spine down for 5 minutes. Take out the plate and other tubes needed and label them. 
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9. After the 5 minutes centrifugation, suck out the media, pipette up and down several times 

to break the cell clusters. 

10. Count the cell number under the microscope. And calculate how much volume of the cells 

is required to take out. 

11. Put some media in the new plate first and add the required amount of cells into the plate. 

Mix them well, tap the plate, and put into the incubator. 

12. For the 24- or 96-well plate, usually prepare the fresh media and cells in another tube first, 

and aliquot into the wells. 

 

 

 

 

 

 

 



 

 

 

APPENDIX C SPLENOCYTES ISOLATION 

PROCEDURE 

  This protocol is for acquiring the splenocytes from the spleen tissue. The key is to keep the 

tissue on ice during transportation and use caution to avoid split during operation. 

1. Keep the tissue sample on ice for transportation. 

2. Cut the tissue into small pieces with medical scissors in RPMI 1640 medium. 

3. Generate a single cell suspension of splenocytes by grinding all small tissue pieces 

gently with two pieces of frosted glass slides in RPMI medium. 

4. Filter cells using 70 m cell strainer to get rid particles such as fat in the suspension. 

5. Centrifuge the cell suspension in 1500 RPM for 5 minutes and discard the 

supernatant. 

6. Add 10 ml red blood cell lysis buffer and shake at room temperature for 10 minutes to 

remove the red blood cells. 

7. Wash cells PBS/BSA buffer and count them. 

 

 



 

 

 

APPENDIX D IMMUNOFLUORESCENCE STAINING 

PROCEDURE 

  This protocol is for staining cells for cell sorter to get the specific cells. Make sure read the 

manual of the CD marker before the experiment. The proper amount of CD marker (from 

Life Technology) to use in Step 3 is 5 l / million cells. 

1. Pellet cells and spin them at 1500 rpm for 5 minutes. Adjust the cell suspension to a 

concentration of 5x10
6 

cells/ml with PBS/BSA buffer (phosphate buffered saline pH 

7.4 and 1% BSA). 

2. Aliquot 100 µl of cell suspension into as many test tubes as required. 

3. Add conjugated antibody at the recommended dilution from the manufacturer. Mix 

well and incubate at on ice for 30 minutes. Include an unstained control for cytometer 

set-up. 

4. Wash cells with 2 ml of PBS/BSA, centrifuge at 1500 rpm for 5 minutes and discard 

the supernatant. 

5. Resuspend cells in 0.3 ml of PBS/BSA or with 0.2 ml of 0.5% paraformaldehyde in 

PBS/BSA if required.  

 

 



 

 

 

APPENDIX E PROTOCOL OF STAINING WITH SYTO 

61 AND MITOTRACKER ORANGE  

  The double staining protocol is for acquiring confocal image stack. Primary cells are easily 

to bleach or to lose the signals after long-time staining. Therefore the incubation time in step 

8 can be shorter than 30 minutes for primary cells.   

1. Collect cells in 15mL conical tube from the cell culture.  

2. Spin cells at 1500 rpm for 5 min. 

3. Aspirate the media on top of cells to obtain a cell pellet. 

4. Break up cell pellet by tapping the tube and resuspend cells by adding 5mL of culture 

media. 

5. Pipette the cell suspension several times to make sure a single cell suspension. 

6. Add 1µL of Syto-61 and MitoTracker Orange stock solution to the 5mL cell suspension so 

the final concentration is 1uM for Syto-61 and 0.2uM for MitoTracker Orange - start of 

staining. 

7. Invert tube several times to mix media well. 
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8. Incubate at 37deg C and 5% CO2 for 30 min. 

9. Spin cells at 1500 rpm for 3 min.  

10. Break up cell pellet and resuspend cells in 2mL of media as previous procedure – start of 

1
st
 wash. 

11. Incubate at 37
o
C and 5% CO2 for at least 5 min. 

12. Spin cells at 1500 rpm for 3 min. 

13. Aspirate the media on top of cells to obtain a cell pellet, and this is the end of 1
st
 wash. 

14. If too much fluorescence background appears in the confocal images, a 2
nd

 wash may be 

taken by repeating above steps. 

15. Resuspend pellet in 0.5 to 1mL media to have high cell concentration for confocal 

observation –cell suspension for imaging. 

16. Add 150 µL to depression slide, put a glass cover slide on top and invert the assembly for 

the inverted microscope viewing. If cells are too close to each other, dilute cell suspension 

with more media. 

 



 

 

 

APPENDIX F CELL COUNTING PROTOCOL 

  Cell counting should be applied after cell isolation or before staining. Also it is necessary 

to count the cell after sorting to estimate the viability of cells. 

1. Ensure the hemocytometer is clean using 70% ethanol. 

2. Make sure the cell suspension to be counted is well mixed by either gentle agitation of 

the tube containing the cells (or other appropriate container). A serological pipette 

may be used if required. 

3. Using a 100 µL pipette, take out the cells and drop them in a small tube (gently to 

avoid lysing them). Take out 100 µL trypan blue and mix gently. 

4. Using a Gilson pipette, draw up some cell suspension containing trypan blue. 

Carefully fill the hemocytometer by gently resting the end of the Gilson tip at the 

edge of the chambers. Take care not to overfill the chamber. Allow the sample to be 

drawn out of the pipette by capillary action, the fluid should run to the edges of the 

grooves only. Re-load the pipette and fill the second chamber if required. 

5. Focus on the grid lines of the hemocytometer using the 10x objective of the 

microscope. Focus on one set of 16 corner squares. 

6. Using a hand tally counter, count the number of cells in this area of 16 squares. When 

counting, always count only live cells that look healthy. Count cells that are within the 
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square and any positioned on the right hand or bottom boundary line. Dead cells 

stained blue with trypan blue can be counted separately for a viability count. 

7. Move the hemocytometer to another set of 16 corner squares and carry on counting 

until all 4 sets of 16 corner squares are counted. 

8. The hemocytometer is designed so that the number of cells in one set of 16 corner 

squares is equivalent to the number of cells x 10
4
/mL. Therefore, to obtain the count, 

and the total count from 4 sets of 16 corner = (cells/mL x10
4
) x 4 squares from one 

hemocytometer grid.  

9. So divide the count by 4. Then multiply by 2 to adjust for the 1:2 dilution in trypan 

blue. These two steps are equivalent to dividing the cell count by 2. As an example:  

if the cell count is 145, the cell density is: 145/2 = 72.5 x 10
4
/mL. 

 

 


