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Abstract 

In this study we present a model of in vitro cell killing through type II Photodynamic Therapy 

(PDT) for simulation of the molecular interactions leading to cell death in time domain in the 

presence of oxygen transport within a spherical cell. By coupling the molecular kinetics to cell 

killing, we develop a modeling method of PDT cytotoxicity caused by singlet oxygen and obtain 

the cell survival ratio as a function of light fluence or initial photosensitizer concentration with 

different photon density or irradiance of incident light and other parameters of oxygen 

transport. A systems biology model is developed to account for the detailed molecular 

pathways induced by PDT treatment leading to cell killing. We  derive a mathematical model of 

cell decision making through a binary cell fate decision scheme on cell death or survival, during 

and after PDT treatment, and we employ a rate distortion theory as the logical design for this 

decision making proccess to understand the biochemical processing of information by a cell. 



 
 

 
 

Rate distortion theory is also used to design a time dependent Blahut-Arimoto algorithm of 

three variables where the input is a stimulus vector composed of the time dependent 

concentrations of three PDT induced signaling molecules and the output reflects a cell fate 

decision. The concentrations of molecules involved in the biochemical processes are 

determined by a group of rate equations which produce the probability of cell survival or death 

as the output of cell decision. The modeling of the cell decision strategy allows quantitative 

assessment of the cell survival probability, as a function of multiple parameters and coefficients 

used in the model, which can be modified to account for heterogeneous cell response to PDT or 

other killing or therapeutic agents. The numerical results show that the present model of type II 

PDT yields a powerful tool to quantify various processes underlying PDT at the molecular and 

cellular levels and to interpret experimental results of in vitro cell studies. Finally, following an 

alternative approach, the cell survival probability is modeled as a predator - prey equation 

where predators are cell death signaling molecules and prey is the cell survival. The two models 

can be compared to each other as well as directly to the experimental results of measured 

molecular concentrations and cell survival ratios for optimization of models, to gain insights on 

in vitro cell studies of PDT.  
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CHAPTER 1: INTRODUCTION 

1.1 Motivation 

The goal of the study of cell decision processes according to National Institute of 

General Medical Sciences of NIH, is to understand how molecular signaling networks regulate 

cell life-death decisions in tissues and to apply this understanding to the design and use of 

therapeutic drugs1. Research in this directions aims at proper application of mathematical 

modeling and experimental techniques that will yield quantitative understanding of cellular 

decision making processes and their correlations with cellular biochemistry. The validity of 

mathematical models can only be established by rigorous analysis and comparison with 

experimental results.  Photodyamic therapy (PDT) is a unique case study of system biology in 

which cell repair and death in response to combined stimulations of photosensitizer and light 

can be quantitatively investigated and modeled. Therefore, , modeling study of cell killing by 

PDT serves as an interesting cross point at which information theory of decision making can be 

combined for analysis of a complex biological system.  

PDT uses a photosensitizer, light, and oxygen to create tissue damage. PDT 

photochemistry depends on the presence of oxygen and tissue oxygen is consumed through 

photochemical reactions [1] [2] [3]. This phenomenon has been studied by numerous authors 

and models of in vitro PDT studies are available for cultured cells and multicellular tumor 

spheroids [4], in relation to light propagation and heat transfer [5], for oxygen levels 

                                                           
1
 Center for Cell Decision Processes (MIT), National Centers for System Biology    

http://www.systemscenters.org/centers/center-for-cell-decision-processes/   
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surrounding a given capillary in relation to the transient behavior of PDT process [6], for PDT in 

a heterogeneous tissue phantom [7] and others. The oxygen diffusion as an important 

component of oxygen transport in a single cell spherical model, as well as  a detailed 

intracellular molecular PDT model that would result in biochemical states observed in the 

principal mechanisms of PDT cell killing, need to be investigated.  A complete PDT treated  

single cell model will not only provide a system that can be used in the design of cellular 

automata to describe tumor dynamics through the coupling among vascular, cellular and 

subcellular scales, but will also serve as the background for the stimulation of a goal oriented 

decision making about cell fate determination during PDT treatment, as described in later 

chapters.      

Living cells posess the striking ability to process information and make decisions[8] [9]. 

In response to signals from the environment and from other cells, a cell may modulate its 

behavior either continuously (e.g., changing the level of a molecular concnentration) or in a 

discrete manner, choosing among a discrete set of predefined behaviors [8].  The motivation of 

this dissertation is to develop a quantitative and accurate model that describes the behavior of 

a cell as an information processing system, that will arise not only from a detailed molecular 

pathway understanding but also from a signal processing  approach. This has been the subject 

of investigation of a growing numbers of researchers and has been characterized as a  great 

challenge of physics today.  
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1.2 Signicance of this research 

This research examines for the first time the effects of oxygen diffusion and transport on 

the observed kinetics  during Photodynamic Therapy in a spherical cell model and also provides 

a theoretical background for the qualitative and quantitative characterization of different 

aspects of basic cellular decision making processes. The logical design and computational 

algorithms consider the decision-making process of a single cell in response to PDT treatment, 

and can be adjusted to accommodate and provide important insights for  other cellular 

response to other treatments, such as radiation, chemotherapy, neurodegeneration, etc. , by  

applying the principles introduced here.  Moreover, this study includes the introduction of 

predator prey dynamical systems for the study of PDT survival curves in the time domain and 

points towards an axiomatic foundation of biological behavior of PDT treated cells, according to 

the current line of research in the field, that will assess various experimental data.        

1.3 Major results 

In this dissertation research we:  

I. Study and analyze the oxygen diffusion with a spherical cell model in type II PDT 

taking into account the spatial heterogeneity by adding diffusion and 

metabolism terms for the investigation of different oxygen diffusion 

mechanisms through the cell membrane and inside the cell within the context of 

PDT. 
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II. Develop a system biology model that includes 70 types of molecules and their 

detailed pathways and biochemical events induced by PDT treatment leading to 

cell death and can occur through a multiplicity of different mechanisms such as 

apoptosis, autophagy, and necrosis.  

III. Develop a model of tumor cell decision making in response to PDT by employing 

rate distortion theory and designing a time dependent three dimensional 

Blahut-Arimoto algorithm where the source input is a stimulus vector composed 

by time dependent concentrations siganling molecules as these are determined 

by the system of the molecular rate equations through interactions, and the 

output is the probability of cell decision for survival or death. 

IV. Develop a theory of cell survival probability in the framework of a predator-prey 

interaction, employed using the cellular survival density as the prey and 

potential cell death inducing molecules as the predators.  

 

1.4 Structure of thesis 

This thesis contains five chapters.   

Chapter 2 presents some basic background. After first providing a brief review of cancer 

and the history of PDT, it discusses mathematical modeling of the biochemical processes 

involved in PDT and the historical development. This is then followed by a presentation of 
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oxygen diffusion in a spherical cell and Michaelis-Menten oxygen uptake kinetics. The section 

concludes with a discussion of cellular decision making and source coding theory. 

Chapter 3 presents the model of oxygen diffusion and its effect on cellular response to 

type II PDT. The first section presents a brief general introduction to clinical application and 

modeling, and  then the focus shifts to the actual study of the oxygen diffusion in type II PDT. 

This topic is dealt with using a rate equation group, appropriate boundary conditions, decay 

constants and a cell killing model. A positive definite test of the solution vector in time-domain 

is presented.  

Chapter 4 presents a model of cellular decision making in response to type II PDT. The 

first section focuses on the rate distortion theory, as the foundation for consideration of the 

signal transmission within the cell. The following sections then take up the study of the 

biochemical events induced by PDT, the mathematical modeling scheme for the formulation of 

these events, and the logical design for cell decision making that uses the Blahut arimoto 

algorithm.  The chapter concludes with a presentation of simulations results and a discussion of 

their implications.  

Chapter 5 presents the a Predator Prey cell killing model for comparison with the 

previous rate distortion theory model and available experimental results in the time domain. 

The chapter contains a discussion on the concection between current mathematical and 

biological modeling systems in response to the main research need for the development of a 

new mathematical theory for study of survival curves of PDT treated cell populations. . A 

discussion of suggested future research direction is included.   



 
 

6 
 

Chapter 6 is a summary of the analysis presented in this study. It presents a discussion 

on conclusions and implications of the modeling techniques developed in the previous 

chapters. 



 
 

 
 

 

CHAPTER 2: BACKGROUND 

2.1 Cancer and Photodynamic Therapy 

The focus of this dissertation lies on a novel clinical treatment modality called the “Photodynamic 

Therapy” (PDT) which is based primarily on the interaction of light with human tissue and certain 

cancer-specific agents which can be exploited and utilized in our struggle against cancer.  

The World Health Organization defines cancer as “a generic term for a large group of diseases that 

can affect any part of the body. Other terms used are malignant tumors and neoplasms. One defining 

feature of cancer is the rapid creation of abnormal cells that grow beyond their usual boundaries, and 

which can then invade adjoining parts of the body and spread to other organs. This process is referred to 

as metastasis. Metastases are the major cause of death from cancer”. 

Cancer is the leading cause of death in economically developed countries and the second leading 

cause of death in developing countries. About 12.7 million cancer cases and 7.6 million cancer deaths 

are estimated to have occurred in 2008 worldwide, with 56% of the cases and 64% of the deaths in the 

economically developing world [10]. 

Cancers are primarily an environmental disease with 90–95% of cases attributed to environmental 

factors and 5–10% due to genetics[11], although it is nearly impossible to prove what caused a cancer in 

any individual, because most cancers have multiple possible causes.  The examination of a tissue sample 

by a pathologist is required for a definite diagnosis of cancer.  Medical tests commonly used include 

blood tests, X-rays, CT scans and endoscopy.  The major management options for cancer are surgery, 

chemotherapy, radiation and palliative care, among others.  According to the National Cancer Institute, 
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radiation therapy uses high-energy radiation to shrink tumors and kill cancer cells. Available methods to 

kill cancer cells involve x-rays[12], gamma-rays[13], beta rays[14], neutrons[15], high energy 

electrons[16], protons[17], light and photosensitizers[18], light and gold nanoparticles,  surgery, 

cryosurgery[19], chemicals[20], hyperthermia[21] and thermoablation[22]. Photodynamic Therapy is 

largely an effort to reduce the use of chemotherapy and radiotherapy for treating cancer. 

Chemotherapy is considered to impose difficulties because drugs often produce harmful side effects. 

And radiotherapy is also problematic because x-rays travel through normal tissue to arrive at the tumor 

site and it is known that the x-rays sometimes damage normal tissue. 

The utilization of lasers in medicine has been overwhelming due to the possibility of varying its 

biological impact via the selection of wavelength, output power and, illumination time and mode. [278]. 

This thesis focuses on a regimen of utilizing light within medicine referred to as the Photodynamic 

Therapy (PDT), and considers mathematical modeling techniques to investigate the PDT effect, the 

mechanism of cell killing and the cell decision making in response to PDT treatment. Compared with 

conventional cancer therapies such as chemotherapy and radiotherapy, PDT has major advantages, such 

as: PDT treatment can be repeated in case of recurrence or a new primary tumor in the previously 

treated area. Such retreatment is extremely difficult for either surgery or radiotherapy, without the risk 

of severe normal tissue damage[23]. During the past 30 years, PDT has been employed in the treatment 

of many tumor types, and its effectiveness as a curative and palliative treatment is well documented. 

Especially for skin cancer, it is becoming an established therapy[23].  

In Chapter 3, a mathematical model that involves the major biochemical components of PDT and is 

based on the cytotoxic character of Reactive Oxygen Species (ROS) generated during treatment is 

presented and discussed as the first part of our numerical modeling of the PDT processes.    
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The second part of this study consists of the analysis of cellular decision making which in general is 

defined as the process whereby cells assume different, functionally important fates with or without an 

associated genetic or environmental difference. Stochastic cell fate decisions generate nongenetic 

cellular diversity, which may be critical for cell development but also for disease management and 

therapeutic treatment as well as optimization studies related to cell survival in a fluctuating, frequently 

stressful environment[24].  

Cellular decision making is a fundamental biological property, and in Chapter 4, a mathematical 

model that describes this information theoretic phenomenon is presented, with the PDT treatment and 

cell death/survival as a case study.   

2.2 History of PDT  

The use of light for therapeutic reasons has been known since antiquity. Phototherapy has its roots 

in ancient Greece, Egypt, China and India where light was used to treat many diseases such as vitiligo, 

rockets, psoriasis, skin cancer and even psychosis. Herodotus introduced Heliotherapy (exposure to sun) 

which was used by the Greeks 2200 years ago for restoration of health [25]. After a long period of time 

of about 2000 years, physicians revisited the healing effects of the use of light, which its modern form, 

today, under the name “Photodynamic Therapy”, it was introduced and developed to an effective 

modality of cancer treatment and a popular science by Oscar Raab, Herman Von Tappeiner and Niles 

Finsen (18th century). Danish physician Niels Finsen initiated the use of carbon arc phototherapy for 

lupus vulgaris and won the Nobel Prize in 1903 for his work [25]. Oscar Raab, early in the 20th century 

was the first to scientifically examine the photo therapeutic effects by experimentally identifying the link 

between fluorescence product and toxicity. He hypothesized the transfer of energy from light to 

chemical that could be used as a therapeutic agent in dermatology. Von Tappeiner introduced the name 

“Photodynamic Therapy”, to describe the phenomenon of oxygen dependent photosensitization (1904). 
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Hematoporphyrin derivatives were proposed for cancer treatment. A hematoporphyrin derivative is 

a complex composed of a multitude of different porphyrin molecules and can concentrate specifically in 

tumors[26]. Such derivatives are photosensitive and yield cytotoxic radicals when activated with light, 

but are harmless when used alone [27].  This is another definition of PDT (photodynamic therapy).  A 

main advantage of PDT, over classic chemotherapy, relies on the absence of systemic toxicity of 

photosensitizers alone, and the ability to irradiate and treat the tumor zone specifically. PDT was 

successfully applied but limited, in most cases, for the treatment of superficial cancers such as 

esophageal and lung cancers because of the weak light penetration through tissues [28]. 

Haematoporphyrin (photosensitizer) has been shown to have cytotoxic effects when activated by 

light and is also tumor localizing, which makes it a desirable target for photo activation and tumor cell 

damage. Haematoporphyrin was first made by Scherer in 1841[29].”Porphyra” is the Greek name for 

“red-purple” and was used by Hoppe-Seyler (1871) to describe the purple substance in iron-free 

haematin as Haematoporphyrin. The biological properties of Haematoporphyrin were analyzed and 

studied by Haussmann(1908) for the first time. But it was Friedrich Meyer-Betz (1913) , who 

experimented on himself by injecting in him Haematoporphyrin and noticing pain after controlled light 

exposure. Selective localization of poprhyrins to tumors was discovered a few years later by Policard 

(1923)in Lyon, who observed fluorescence in experimental tumors exposed to light and attributed it to 

accumulation of porphyrin in the tumor [25]. The active photosensitizer used in the clinical PDT trial by 

Dougherty (treated 113 cutaneous or subcutaneous malignant tumors and observed a total or partial 

resolution of 111 tumors[26]) in 1978  was an agent called Haematoporphyrin Derivative (HpD), which 

was first characterized in 1960 by Lipson [30]. In his research, Lipson wanted to find a diagnostic agent 

suitable for the detection of tumors in patients. With the discovery of HpD, Lipson went onto pioneer 

the use of endoscopes and HpD fluorescence to detect tumors. The pharmaceutical name of HpD is 
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Photofrin, as it was introduced on its clinical approval in 1993 for bladder cancer treatment in 1993 in 

Canada. 

 PDT has been used for the treatment early carcinomas of the oral cavity, pharynx, and larynx, 

preserving normal tissue and vital functions of speech [31] head and neck cancer[32],  digestive system 

tumors (Barrett esophagus, esophagus dysplasia), [33-35] various intraperitoneal malignancies[33, 36, 

37], prostate[38], bladder cancer[39, 40], mesothelioma[41], lung cancer[42], among several other types 

of cancer. A complete report can be found in review[43] .  

Current strategies use PDT in a combined therapy together with surgery. PDT in this framework has 

been used as post operational treatment but not only: it is also an exciting area of research to look at 

the use of PDT along with current therapy to make it more effective. One way to do this may be to use 

PDT during surgery to help keep cancer from coming back on large surface areas inside the body, such as 

the pleura (lining of the lung) and the peritoneum (lining of the belly or abdomen). These are common 

sites of spread for some types of cancer. 

The exciting future of PDT involves combinations of new innovative methodologies [43] such as the 

two photon PDT to achieve deeper tissue penetration and better photon absorption by the 

photosensitizer[44], metronomic PDT to deliver drug and illumination at very low dose rates over an 

extended period [45], nanoparticle PDT for photosensitizer delivery and energy trunsucing [46], among 

others.  

As part of a brief historic review of PDT action and PDT agents, it is important to adress the question 

why do photosensitizers localize selectively in tumors. According to current opinion and research 

results, the selective tumor uptake is probably not due to special properties of tumor cells[47] [48] but 

rather to the differences in the physiology between tumors and normal tissues[48-50]: 
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 tumors have a larger interstitial volume than normal tissues,   

 tumors contain a larger fraction of macrophages than normal tissues,  

 tumors have a leaky microvasculature,  

 tumors have poor lymphatic drainage,  

 the extracellular pH is low in tumors,  

 tumors contain a relatively large amount of newly synthesized collagen,  

 tumors contains many receptors for lipoproteins.  

It is stated that some sensitizers localize in both the nucleus and the mitochondria, lipophilic ones tend 

to stick to membrane structures, and water soluble drugs are often found in lysosomes. In some cases, 

light exposure leads to a relocalization of the sensitizers [51]. From the biochemistry point of view, PDT 

action is linked to the intracellular localization of the photosensitizers since the main active 

photoproduct singlet oxygen 2

1O  lifetime is short in cells (microseconds) with a short range of range of 

diffusion from the site of production[52] [29]. This has been suggested to be the reason for the low 

mutagenic potential of PDT, since most photosensitizers are localized outside the nucleus. On the other 

hand, it has been observed that PDT has a strong effect on cell division which is probably mainly due to 

microtubule damage and may contribute significantly to PDT induced cell death  [48],[53].    

2.3 Mathematical Modeling of Biochemical Processes 

Mathematical modeling is essential to clearly reveal and understand the fundamental processes 

underlying the properties of living biophysical systems. Often modeling can be implemented with 

systems of differential equations which allow the qualitative study of biological processes and 

interpretation of regular and irregular behaviors of different quantities represented by corresponding 

variables. This modeling of biophysical processes includes the study of growth, interaction between 
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variables (species, molecules, micro-organisms, etc.), oscillations, trigger, and other biological 

mechanisms. With the use of appropriate algorithms that numerically solve a differential equation 

system, it is possible to describe the behavior of a complex biological system on the basis of its major 

components and the main features of their interactions. The processes of molecular dynamics and the 

molecular interactions can be investigated with the use of information system theory and then 

compared to experimental data. Complex inhomogeneous structures resulting from the miraculous 

variations of qualitative and quantitative characteristics of living systems, that regulate the 

corresponding bio- environments in which bio-molecular processes take place, cannot, in principle, be 

formalized in a mathematical equation. Mathematical modeling allows the abstraction, idealization, and 

description of major characteristics depending upon the interest of the research. Intracellular molecular 

interactions can be studied with the purpose of extracting useful conclusions, by using computational 

methods. For example, the mathematical formulation of biochemical reactions of enzyme catalysis [54] 

[55] [56] has been used as a standard reference in molecular dynamics with a number of applications 

beyond enzymatic physics. In particular, in the area of system modeling at the cell level, the theory of 

metabolic control is actively studied, and targets towards the determination of controllable stages in 

complex metabolic cycles of intracellular reactions.    

All that said, and in anticipation of the analysis that will follow, one more important matter needs to 

be discussed. There might indeed be a general belief in mathematics (and in physics, and in biology) that 

with time essentially any problem of "mathematical interest" will be solved.  According to Wolfram 

though, there is ,in a sense, "genuine impossibility" and If all of physics can successfully be reduced to 

mathematics, then mathematical impossibility in a sense becomes physical impossibility. Models of 

physical systems have indeed very frequently been set up like traditional digital computations, with 

discrete variables, and explicit progression with time. But even traditional physical models are in many 

senses computational for even though there are continuous variables and equations to solve, we use 
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computer softwares[57, 58], to extract valuable information. We will be discussing about cellular 

processes such as cellular decision making. How can we know whether a computational model actually 

is the appropriate model for cell decision making? The complexity of such a program-algorithm is 

expected to be very high, and If the model is computationally irreducible, we can only hope to find 

enough computational reducibility to identify known physical or biological laws within the cell model. if 

the model reproduces any reasonable number of features of biophysical processes, and is relatively 

simple, then there is a good chance that within its class of simple models we can find an accurate initial 

modeling approach. Beyond well-known reducible features, there lies an infinite frontier of 

computational irreducibility and if we take the alternative pathway and try to reduce physics and 

biology to mathematics we expect to run into phenomena like Gödel’s theorem of incompletness. 

Therefore, the constraints in cell decision making and predictive modeling in general are not ones of 

physics, but rather ones of a deeper nature. According to the Principle of Computational Equivalence2, 

the constraints on what is possible will be abstract features of the general properties of mathematical  

or computational environments. 

Of course one has to keep in mind of the limitations of computability of an algorithm. According to 

the Church-Turing conjecture, a function is algorithmically computable if and only if it is computable by a 

Turing machine. A Turing machine is a theoretical device[57] that consists of a line of cells known as 

“tape” that can be moved back and forth, an active element known as the “head” that possesses a 

property known as “state” and that can change the property “color” of the active cell underneath it, and 

a set of instructions for how the head should modify the active cell and move the tape. At each step the 
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machine may modify the color of the active cell, change the state of the head,  and then move the tape 

one unit to the left or right (Stephen Wolfram “A New Kind of Science”,2002, Wolfram Media).  

To overcome the limitations of a Turing algorithm, Burgin  discovered the super recursive 

algorithms. Super-recursive algorithms are generalizations of ordinary algorithms that are more 

powerful, that is, compute more than Turing machines[59, 60]. According to Burgin, “the super recursive 

class of algorithms is a class in which it is possible to compute functions not computable by any Turing 

machine”. A Turing machine indeed can process  any number of different patterns with the option to 

accept or reject the input or to update cells on the tape and it is a theoretical construct rather than a 

computer. The universal Turing machine, can emulate any other Turing machine. More precisely, it 

can(Mike Deehan, “The Universal Turing machine is a Turing Machine emulator”, March 2012): 

1. Define the symbols that the specific Turing machine will use. 

2. Define the symbols that encode the states and transition rules for the specific Turing machine.  

3. Encode the rules for that specific Turing machine onto the input tape. 

A universal Turing machine therefore, can emulate even itself and examples of the capabilities is the use 

of the Universal Turing machine in solving Hilbert’s Decision problem” and the “Halting problem”.  What 

we need to notce here is that Turing machines (computers) use functions whose values are 

algorithmically computable and therefore any features or entities coming from sources that do not 

belong in this category, will require a new framework . For example, although it is known that questions 

about the behaviour other Turing machine, there are are undecidable, meaning that the function in 

question cannot be calculated mechanically ( “Halting Problem”).  A Turing machine can be simulated by 

a universal turing machine, but a universal Turing machine cannot be simulated by a simple Turing 

machine.  This is a critical piece of information. In the later chapters, we will be discussing about the 
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survivability of the cell. One may be tempted to use the language of bio-computing to describe the 

entity of a cell. Indeed,  the first steps towards the design of programmable molecular computing 

machines based on Turing theory  have already been taken. A DNA computer coupled with an input and 

output module which would theoretically be capable of diagnosing cancerous activity within a cell, and 

release an anti-cancer drug upon diagnosis were presented in[61]. The analogies in this study were 

hardware-enzymes and software-DNA. An extension of this initial design was presented in[62] in 2012, 

where the device was shown to operate on three-dimensional building blocks by applying mechanical 

analogues of polymer elongation, cleavage and ligation, movement along a polymer, and control by 

molecular recognition unleashing allosteric conformational changes. The invention of this mechanical 

device that embodies the theoretical computing Turing machine was awarded a US patent in 2001. 

Earlier, the authors in[63] used specially prepared pieces of DNA in a test tube to input data of a 

computation and then left the molecules to their natural inetractions which included limking up to form 

sequences of DNA which could be chemically decoded to give the results of the computation3.  

Attractive as it seems to borrow ideas from DNA based computers and try to use Turing like models in 

molecular biology to analyze life mechanisms with DNA processors, these innovative and perhaps useful 

ideas are not sufficient to describe the living entity of a cell. Cellular life requires a different description, 

a description that will be able to accommodate wondrous and challenging phenomena, such as cell 

survival under adverse circumstances and cell fate decision making.     

John Von Neumann posed and solved the following question: what kind of logical organization is 

sufficient for an automaton to control itself in such a manner that it reproduces itself? [64]. A cellular 

automaton is specified by giving a finite list of states for each cell, a distinguished state called the blank 

state, and a rule which gives the state of a cell at time t+1 as a function of its own state and the states of 

its neighbors at time t. It consists of a cellular space and a transition function defined over this space. 

                                                           
3
 Toby Howard, “Computing with DNA”, appeared in Personal Computer World magazine, April 2000” 
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Finite automata consititute the basis of Turing machines[64]. Von Neumann was the first provide an 

algorithmic model of a self-reproducing automaton, the Universal Constructor, a self-replicating 

machine in a cellular automata environment and  (in a brief summary), he proved that the construction 

of this sort of automaton would necessitate the solution to three fundamental problems [64, 65]:  

α. to store instructions in a memory; 

β. to duplicate these instructions; 

γ. to implement an automatic factory (“Universal Constructor”), able to read the memory 

instructions, and, based on them, to construct the components of the system; 

δ. to manage all these functions by means of a central control unit. 

A self-reproducing system must contain the program of its own construction. This program is a sort of 

consistent and complete abstract image of the system. In other words, self-reproduction needs 

programming and processors (software -for information based replication- and hardware)4. The solution 

to these problems mentioned above may be found in living things as observed by modern biology. An 

efficient mechanism of information storage and an elegant mechanism of duplication of the DNA 

molecule may be the one and only perfect solution to the twin problems of information storage and 

duplication for self-replicating automata[65]. But more importantly, Von Neumann understood that any 

information-based replicator must contain inside itself (among other indispensable things) a symbolic 

representation of itself, an “image” of itself. The relation between the replicator ( hardware) and the 

image ( a structure of symbols, the software) is a functional relation of dependence, since the symbolic 

representation consists of directives and instructions that must be interpreted by the replicator 

machinery for constructing a copy of itself. According to5 Von Neumann proposed this scheme before 

the structure of the DNA molecule was uncovered by Watson and Crick[66] , though after the Avery-

                                                           
4
 http://www.uncommondescent.com/biology/john-von-neumann-an-ider-ante-litteram/ 

5
 Rocha, L.M.  “ Von Neumann and Natural selection” Biologically inspired computing lecture notes, chapter 6 



 
 

18 
 

MacLeod-McCarty experiment[67] which identified DNA has the carrier of genetic information. 

According to Brenner[68] “The concept of the gene as a symbolic representation of the organism–a code 

script–is a fundamental feature of the living world and must form the kernel of biological theory.” 

As a final remark on Von Neumann’s Universal Constructor we need to notice first that the four 

principles (α,β,γ,δ) mentioned above are irreducible in complexity (irreducible incomplexity are the 

principles of a Turing machine as well) and secondly that the concept of the symbolic representation-

based self reproduction implies a language (a symbol system, a syntactic code to be used to map 

instructions into construction commands for replication. In copying a description, the syntactic aspects 

are replicated6).   

                                                           
6
 Rocha, L.M.  “ Von Neumann and Natural selection” Biologically inspired computing lecture notes, chapter 6 
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Figure 2.3.0. The research direction of this study 

 

 

2.4 Type I and type II reaction in photodynamic therapy (PDT) 

There are two types of reaction during PDT, two mechanisms by which the triplet (excited) state 

photosensitizer can react with biomolecules, known as the Type I and Type II reactions. Following the 

absorption of light, the sensitizer is transformed from its ground state into an excited state. The 

activated sensitizer can undergo two kinds of reaction[69]: 
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 Type I reaction: Type I involves electron/hydrogen transfer directly from the photosensitizer, 

producing ions, or electron/hydrogen abstraction from a substrate molecule to form free 

radicals. These radicals then react rapidly, usually with oxygen, resulting in the production of 

highly reactive oxygen species (e.g. singlet oxygen, the superoxide and the peroxide anions). 

These radicals then attack cellular targets7.  The Type I reaction is a radical or redox reaction in 

which a photosensitizer, excited to the triplet state, interacts with a neighbouring molecule (A) 

by exchange of an electron or a hydrogen atom: 

                                                            ATAT                                                                     (2.4.1) 

                                                             oxAOA  2

3                                                                       (2.4.2)  

Or  

                                                           202 OSOS                                                                   (2.4.3) 

                                                             oxAAO 

2                                                                         (2.4.4)  

in both cases giving an oxidized biomolecule. Alternatively:  

                                                                
  22

3 OTOT                                                             (2.4.5) 

                                                                   ASAT 0                                                            (2.4.6) 

 Type II reaction: Type II involves the direct interaction of the excited triplet state photosensitizer 

with molecular oxygen (triplet ground state) which results in the photosensitizer returning to its 

singlet ground state and the formation of singlet oxygen, a highly reactive oxygen species. These 

species oxidize various substrates. This is an energy transfer process.  

                                                           2

1

02

3 OSOT                                                                     (2.4.7)  

                                                           
7 The Leeds Centre for Photodynaic Therapy (PDT) website, School of Biochemistry and Molecular Biology, University of 

Leeds. 
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                                                                oxAAO 2

1                                                                     (2.5.8) 

Most photosensitizer (PS) drugs used in clinical studies of PDT achieve tumor eradication by 

generating highly reactive oxygen molecules in the singlet excited states through a Type II 

process[7].  It also known that there are three main mechanisms by which PDT mediates tumor 

destruction[69, 70]:  

 Direct tumor-cell killing, which depends on the non-homogenous distribution of the 

photosensitizer within the tumor, the availability of oxygen within the tissue that is targeted by 

PDT, and the time of illumination. 

 Vascular damage, which reduces the amount of nutrients supplied by the blood vessels to the 

tumor cells and causes severe tissue hypoxia and vascular effects associated with a delay in 

tumor growth.  

 Immune response, which refers to the infiltration of lymphocytes, leukocytes and macrophages 

into PDT-treated tissue. PDT generated tumor-sensitized immune cells that could be recovered 

from lymphoid sites distant to the treated tumor at different time intervals after PDT  have 

been reported[71].  

In this study, we will focus on the PDT process that involves the excitation of photosensitizer (PS) by 

photons and a cascading chain of reactions leading to cytotoxicity (necrosis, apoptosis, autophagy) , 

since we will be mainly interested in modeling cell killing through different bio molecular mechanisms, 

and cell survival probabilities based on a cell model, as well as cell decision making as a result of PDT 

stimulation.  
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2.5 Mathematical Modeling of PDT 

There are several factors that can affect dosimetry during PDT. The initial interactions involving 

the photosensitizer, light, oxygen and various biological targets within the tissue, as well as the dynamic 

changes in these parameters during treatment need to be taken into consideration. The analysis of 

these factors is of crucial importance for the design of useful dosimetric models [280] .    

The effects of photochemical 2

3O  depletion on the efficacy of PDT have been analyzed in the 

case of photosensitized multicell tumor spheroids  in [3]. A time dependent theory of 2

3O diffusion with 

consumption was introduced to quantitatively determine the rate of photodynamic 2

3O   consumption 

as a function of the incident fluence rate and several other parameters that describe 2

3O  transport in 

this system. With these parameters and knowledge of the properties of 2

1O  in a cellular environment, 

the diffusion-consumption model was shown to be potentially useful in the calculation of the amount 

and distribution of reacting 2

1O   molecules in a multicell tumor spheroid during PDT. By comparing the 

calculations with the results of previous experiments, the authors were able to estimate the threshold 

dose of reacting 2

1O   necessary to kill cells in the special cases of tumor spheroids. To model the Type II 

photodynamic process, the following time dependent diffusion with consumption equations were 

numerically solved, in the region of interest:  
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where ),( trC is defined as the local 2

3O  concentration, r as the radial distance from the center of the 

spheroid, t is the time from irradiation of PDT, ds RR ,  were the radius of the spheroid and the 

outermost radius of the depletion zone respectively, and sd DD ,  are the corresponding diffusion 

coefficients for 2

3O  and ),( tr is the total rate of 2

3O   consumption within the spheroid. It was noted 

that 2

3O  will be consumed within the spheroid by photodynamic as wells as metabolic processes:  

                             
),(),(),( trtrtr PDTm  ,   sRr 0                                                             (2.5.3) 
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In these equations  ][A  stands for the concentration of intracellular targets of 2

1O reaction 

(acceptor concentration), aI is the photon absorption, y  denotes the photosensitizer triplet yield, and 

S denotes the photosensitizer triplet quenching. The interpretations of all other constants can be 

found in [3]. The PDE system was solved subject to the boundary conditions  
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Specifying that at the edge of the spheroid the 2

3O  concentration and the 2

3O  flux will be continuous 

across the boundary, expressing mathematically the fact that the system is open to the environment. 

Together with the boundary conditions, a set of initial conditions for the numerical solution of the 

system was provided:  
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Where mC denotes the 2

3O consumption in the medium far from the sphere. To solve this system of 

equations, the space and time coordinates were discretized and placed on a radial lattice. The equations 

were then discretized following a Crank-Nicolson scheme to insure stability and second-order accuracy 

in both time and space[72]. 2

3O  microelectrode measurements established the validity of the model 

and provided values for the parameters that constitute it. Useful conclusions were drawn such as that 

the magnitude of the spheroid-cell surviving fraction was correlated with the extent of anoxia induced 

by the therapy. 

In contrast to this model where the depletion radius was assumed to be constant throughout 

PDT, a model that allowed the depletion radius to vary dynamically as a function of the spatially 

averaged rate of  2

3O  consumption was presented in [280]. Upon the onset of irradiation, the depletion 

zone boundary was forced to move further away from the spheroid edge in response to the increases   

2

3O  consumption in the spheroid. In this model, as the  2

3O  concentrations reach a quasi-equilibrium 

state, the depletion radius reaches its maximum value. It then decreases as gradually as photo bleaching 

effects become significant and the photochemical  2

3O  consumption decreases. This is considered 
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necessary for the proper analysis of the 2

3O measurements that demonstrate the effect of photo 

bleaching [280]. In this study, the rate ),( trPDT was modified to accommodate photo bleaching, 

according to a simple exponential bleaching term 
Dae 

where D is the fluence )( 2 cmJ and a is a 

bleaching coefficient )( 21 cmJ 
:  
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In the same reference,   a second possible mechanism that implicates the 2

1O as the direct mediator of 

sensitizer bleaching was investigated, suggesting that the photosensitizer is degraded by chemical 

reaction with 2

1O . Assuming that 2

1O reacts only with ground state of the photosensitizer 0S , and 

considering that in the absence of photo bleaching the concentration of  0S  remains constant, and 

moreover that loss of ground absorption proceeds much slower than the rates associated with the 

primary photochemical reactions occurring during treatment, a simple ordinary differential equation 

was derived:  
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and further considerations led to an expression describing 2

1O mediated sensitizer degradation as: 
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In this study, it was assumed that the photosensitizer can be modeled as uniformly distributed 

throughout the spheroid. The rate equations used in this study for the sensitizer excited singlet and the 

sensitizer triplet excited concentrations are:   
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  Where the interpretation of the constants can be found in this reference. 

A rate equation approach used to solve the time dependence of the molecular concentrations in 

a Type II PDT process as a consequence of the local photon density  with six coupled, first order 

differential equations was presented in [7, 73]. The PDT process takes place in a cell spheroid and it is 

started by the absorption of photons by 0S , with an absorption cross-section psa . The system 

equations of this model are: 
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Where R are the intracellular receptors for 2

1O  . The first and second terms on the right-hand side of 

(Eq. 2.19) are the rates of 2

1O consumption in oxidization and photo bleaching of intracellular receptors. 

In addition, (Eq. 2.19) also includes the reaction of 2

1O  with various oxygen scavengers with an average 

rate sck  and concentration ][C . The values of coefficients and parameters and a detailed discussion on 

the selection of these coefficients are presented in reference[7] . This model accommodates the 

assumption that PDT process is caused primarily by the oxidization of various intracellular receptors at 

the PS binding sites. Various repair mechanisms can be activated within a cell to undo the cytotoxic 

damage. When the concentration of cytotoxic agents exceeds a certain threshold in a cell, irreversible 

apoptosis or necrosis occurs[74]. This is the justification why the time evolution of unoxidized receptors 

][R is determined by its reaction rate with singlet oxygen and a repair rateU .  

                                      

Figure 2.2.1.  A schematic representation of the PDT process[7]. The symbols in angled brackets are 

relaxation times of the excited states, symbols in parentheses are quantum efficiencies and symbols 

with dashed lines are reaction constants. 

 

The authors in this report, calculated the steady-state light distributions using a Monte Carlo method in 

a heterogeneous tissue phantom model and showed that the photon density differs significantly in a 
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superficial tumor of only 3 mm thickness. Then, they went on to define respective decay times and 

quantitatively study the effects of photon density, drug dose and oxygen concentration on 

photobleaching and cytotoxicity of a photofrin-mediated PDT process. Comparison of the dependences 

of the receptor decay time on photon density and drug dose at different concentrations of oxygen 

clearly showed an oxygen threshold under which the receptor concentration remains constant or PDT 

exhibits no cytotoxicity[7].  Although this model is considered to be useful toward the understanding of 

clinical PDT treatment (and a short discussion of treatment of chest wall recurrence of breast carcinoma 

was presented),  the time dependence of ][R  and its relation to cell survival in the time domain with a 

cell-killing model remained to be determined in the future. 

An elementary model that provides estimates for the rate of oxidation and the necessary 

irradiation dose has been presented in[75] . The dose curve of cell damage was calculated and the 

calculation results were compared with the experimental data. In particular, the authors consider lipids 

of the external membrane of a cell as the vitally important substratum of the cell and singlet oxygen 

attacks this substratum, oxidizing it.  The cell damage was therefore associated with the oxidation of 

membrane lipids. In their biological tissue model, the authors used a system of kinetic equations similar 

to the system proposed in [7]  and briefly discussed above, to describe the photodynamic fullerene–

oxygen action and corresponding chemical reactions in tissue. In this model, the new component is X

the concentration of intact (alive) cells and it was also assumed that the rate of damage of cells is 

proportional to the fraction of the oxidized substratum:  

                                                 
oxtdt

d 
  , 1)0(                                                                       (2.5.21) 

                         X
dt

dX
 )1(0  ,               0)0( XX                                                      (2.5.22) 



 
 

29 
 

Where  
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Is a dimensionless variable, and sN is the concentration of the substratum, 
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1

2

1Ok
t

ox

ox   and the 

constant 0  describes the sensitivity of cells of a particular type to the photodynamic action and its 

value is unknown; however, it can be found from measured dose curves. The solution of this system 

yields the dependence of the number of surviving cells on time, i.e., the so-called dose curve:  
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However, the receptor-independent contributions to the rate of cell killing as a result of ROS (reactive 

oxygen species) stress were not discussed in this study, although their contribution is significant as the 

fluence rises, and therefore accurate modeling of cell killing by PDT remained a challenging task because 

of the complexity of the process. 

As a concluding remark here, it is necessary to mention that it has been observed and 

demonstrated that PDT has significant immunological effects[76] and that it also causes significant 

vascular damage[77].   The immunological effects of PDT play a role in tumor destruction as well as the 

prevention of tumor recurrence [78], but more experimental data are necessary before any modeling 

scheme is applied. 

2.6 Oxygen diffusion in a spherical cell -  Michaelis-Menten oxygen uptake kinetics 

Cell membranes act as barriers to most, but not all, molecules. The cell membrane functions as a 

semi-permeable barrier, allowing a very few molecules across it while fencing the majority of organically 
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produced chemicals inside the cell.  Oxygen is among the few simple molecules that can cross the cell 

membrane by diffusion[79]. Diffusion is one principal method of movement of substances within cells, 

as well as the method for essential small molecules to cross the cell membrane. For example, metabolic 

processes in animals and plants usually require oxygen, which is in lower concentration inside the cell, 

thus the net flow of oxygen is into the cell (M.J. Farabee, online biology book). Diffusion of oxygen is 

considered to be a “passive” transport that requires no energy from the cell.  A mathematical-numerical 

approach to the modeling of oxygen diffusion in a spherical cell was initiated in [80]  with a spherical cell 

model  that consists of a surface membrane and protoplasm and where external diffusion effects are 

neglected. In this model, enzymes are compartmentalized in the protoplasm and act as catalysts for the 

metabolic reactions which provides the energy for the cell [80], while oxygen is acting as a substrate for 

metabolic reactions. A  Michaelis-Menten type term for the oxygen uptake kinetics is assumed:  
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With boundary conditions  
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  and with initial condition 
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(2.28)where  r  is the spatial coordinate measuring the distance from the center of the cell, t  is the 

time coordinate, D  is the diffusion coefficient of oxygen in the cell, V  is the maximum reaction rate, 
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mK  is the Michaelis-Menten constant, 0r  is the radius of the cell, and M is the permeability of the cell 

membrane of 0rr  . The numerical results were obtained using the “random choice” type method 

which was developed for reaction diffusion equations in [81] for the construction of solutions of systems 

of nonlinear hyperbolic conservation. laws. 

Equations above are presented in the context of transport and uptake of oxygen in a spherical cell, 

they in fact have wider biological applicability. It is well-known that the apparent behavior of many 

biological and biochemical processes is well represented by diffusive mass transport coupled with the 

Michaelis-Menten reaction rate expression[82].  Thus these equations are appropriate for a wide variety 

of biological applications, ranging from applied enzyme catalysis to cellular reactions [83] and other 

diffusionally influenced biological systems[83].  Therefore, since diffusion of 2O  in cells has attracted 

research interests in consideration of cellular metabolism and other biochemical processes, quantitative 

modeling is to be pursued in order to consider the rate of oxygen uptake by molecules in the 

metabolism and processes unrelated to PDT, using a nonlinear Michaelis–Menten term of probably two 

adjustable parameters. All the above models consider a spherical configuration in which a spherical 

symmetry of oxygen distribution of 2O  was assumed to simplify mathematical treatment. 

2.7 Cellular Decision Making 

Cell communication, or signal transduction, has at least been thought to be an "automatic" 

cascade of biochemical events. However, some studies report that even before a message makes it 

through the outer cell membrane to the inner nucleus, the cell is busy activating a molecular switch to 

guide how the message will be delivered in the first place [84]. Linking cellular decisions making with the 
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biochemical dynamics in signal transduction can be a very challenging task8. These dynamics span a wide 

range of temporal and spatial scales. The method of stochastic or deterministic bistable switches has 

been suggested as a viable biochemical mechanism to implement decision processes on long time 

scales[85] where an external stimulus is required to induce changes in the switch’s state. It is interesting 

to observe that a bistable switch model is based on a positive feedback loop between two or more 

components. For example, consider a biochemical reaction network involving the two molecular species 

X  and Y . Mathematically, the temporal evolution of the amounts of the two species is described with 

the ordinary differential equations[85] 
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Where ultra-sensitivity, which is required to achieve bistability, is generated by the Michaelis Menten 

type production rates. Other approaches utilize the concept of self-organized criticality, a property that 

appears in some no equilibrium systems. These models have been developed in the area of stem cell 

research and propose that stochastic gene expression within a stem cell gene regulatory network self-

organizes to a critical-like state, characterized by cascades of gene expression that prime various 

transcriptional programs associated with different cell fates[86]. Another model again suggests the 

recapitulation and integration of known biological data from the literature into “influence” diagrams 

describing the molecular events leading to possible cell fate outcomes and the translation of the 

diagrams into dynamical Boolean models for simulations.  

                                                           
8
 Johns Hopkins Medical Institutions (2002, July 1). Decision Making At The Cellular Level. ScienceDaily. 

Retrieved September 20, 2012, 
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Figure2.4.1: Network schematic for the bistable switch model[85] 

A question of major importance is if a cell is damaged, does it repair itself or decide to self-destruct 

and how does the cell make that decision? These models develop multi-scale approaches of how single 

molecule events integrate networks to determine cell fate. Indeed, cancer in particular is the result of 

cell decision-making and deserves special focus. Other activities such as cell maintenance, replication, 

repair, recombination, programmed cell death —apoptosis, etc. need to be investigated. Cellular 

decision making is defined as the process whereby cells assume different, functionally important and 

heritable fates without an associated genetic or environmental difference[24].  

However, in biology much attention is focused on mechanisms:  

 What is the mechanism by which a biological system works.  

  What behavior is produced by a given mechanism. 

  In contrast, questions about goals need to be addressed[87]:  

 What is the goal toward which a biological system works.  

 What system behavior best achieves this goal.  

This framework of decision making processes assumes that It is impossible or impractical to achieve 

these goals perfectly due to stochastic fluctuations and It is important to understand how they may be 
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achieved imperfectly In the most efficient way possible[87]. In a recent research [88] Perkins and Swain 

characterized cellular decision making as having three main tasks: 

 A cell must estimate the state of its environment by sensing stimuli. 

 A cell must make a decision informed by consequences of the alternatives. 

 A cell must perform these functions in a way that maximizes the fitness of the population 

(biological units that can make decisions with less information, and therefore less energy, are 

more efficient and maximize the fitness of the population[87]).   

Information theory, which was originally developed for use in telecommunications, has in recent years 

been increasingly applied to analyzing biological signaling pathways [89] [90] [91] [92] .Rate distortion 

theory, a branch of information theory has been suggested and presented in several studies as the 

framework to answer these and related questions. The rate distortion framework provides a perspective 

on decision making regarding these three tasks as a single process [87]. Indeed, information theory has 

been used for:  

 The determination of the optimal scheme to detect the location of an external chemo attractant 

source in the presence of noise to direct cell migration[92]. 

 The quantification of the influence of the topology of a transcriptional regulatory network on its 

ability to process environmental signals [89]. 

 An information theoretic approach to understand how reliably biochemical networks can 

transmit information (how accurately an input signal as a function of time the “input trajectory” 

can be mapped onto an “output trajectory” [93]. 

 The study of Information processing and signal integration in bacterial quorum sensing. A 

mathematical framework for analyzing information processing in cells based on information 
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theory was derived and used to study the integration of multiple auto inducer signals using the 

model quorum-sensing bacterium Vibrio harveyi[91].  

 Reviewing some experiments supporting the view that genetic networks responsible for early 

development of multicellular organisms might be maximizing transmitted 'positional' 

information. An interpretation of the specific gap gene circuit, active during early development 

of the fly embryo, which appears to function close to the limits imposed by noise in gene 

expression [90].  

Rate distortion theory describes how a noisy communication channel can be engineered to transmit a 

message in a way that simultaneously minimizes error and transmission cost. By regarding a binary 

cellular decision-making pathway this way, it has been suggested that it is possible to design decision-

making strategies that optimally balance accuracy and low metabolic cost[87]. Using this framework, it 

has been shown that several decision-making motifs observed in natural systems including random 

strategies, hysteresis, and irreversibility, arise as optimal strategies in various situations[87].  However, 

in all these studies, discrete, event based techniques have been used. For a dynamic process such as the 

photodynamic action on biological tissue, event based but also time based modeling is required. The 

change of the molecular concentrations with respect to given thresholds, and the time variations need 

to be taken into account.    

2.8 Source coding theory and mathematical formulation 

The theory of data compression was introduced by Claude Shannon [94] as a mathematical 

theory of communication, in his foundational work on information theory. Rate–distortion theory is a 

major branch of information theory which provides the theoretical foundations for lossy data 

compression. The rate R  is usually understood as the number of bits per data sample to be stored or 

transmitted. Shannon showed that, for a given source (with all its statistical properties known) and a 
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given distortion measure, there is a function )(DR  , called the rate-distortion function. If D  is the 

tolerable amount of distortion, then )(DR  is the best possible compression rate. 

The basic elements of communication are  

 The Source: Shannon calls it information source, which "produces a message, a “word” or 

sequence of messages to be communicated to the receiving terminal.  

 Sender: Or transmitter, operates on the message in some way to produce a signal suitable for 

transmission over the channel  

 Channel: The medium used to transmit the signal from transmitter to receiver. 

 Receiver: It performs the inverse operation of that done by the transmitter, reconstructing the 

message from the signal.   

To set up the foundation for the following studies, we recall the major definitions necessary[95]: It is 

customary in information theory to refer to a finite set MA as an alphabet and to call its elements the 

letters of the alphabet.  A probability distribution is a function )( jP defined on MA  with values into

]1,0[ . A function X defined on MA is called a random variable. In particular, we will be using random 

variables of the form 
Mj A

j
jX

max
)(  for j in MA  (normalized molecular concentrations).  The 

expected value of a real random variable f  is defined as 
j

jfjPfE )()()( .  The self-information 

is denoted by )(log)( jPji  and it is a measure of the information one receives upon being told that 

the random variable X has assumed the value j . The base of the logarithm determines the 

information unit.  For two alphabets  MA  and NA , a probability ),( kjP distribution defined on the 

product space NM AA   is called a joint distribution. The marginal distributions are defined as  
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                                                                           
j

kjPjP ),()(                                                                 (2.8.1) 

                                                                           
k

kjPkQ ),()(                                                                 (2.8.2)  

And the conditional distributions are  

                                                                          
)(

),(
)(

kQ

kjP
kjP                                                                    (2.8.3)              

                                                                     
)(

),(
)(

jP

kjP
kjQ                                                                         (2.8.4) 

The conditional self-information is defined by  

                                                                 )(log)( kjPkji                                                                         (2.8.5) 

And it is a measure of the information one receives upon being told that the event jX    if one 

knows already knows the occurrence of the event   kY  .  The mutual information is defined as      

                  
)()(

),(
log

)(

)(
log

)(

)(
log)()(),(

kQjP

kjP

kQ

jkQ

jP

kjP
kjijikji                                    

(2.8.6)    

A “word” distortion measure is a nonnegative function that specifies the penalty charged for 

reproducing a source letter or word from the first alphabet by a letter or word from the second 

alphabet,  kjd , .  With each conditional probability   )( kjQ  there is an associated average 

distortion:      

                                                             ),()()()(
,

kjdjkQjPQd
kj

                                                    (2.8.7)   
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And an average mutual information  

                                                           
)(

)(
log)()()(

, kQ

jkQ
jkQjPQI

kj

                                                (2.8.8)         

A conditional probability assignment is said to be D  admissible if and only if DQd )(  and the set of 

all D  admissible conditional probability assignments is denoted by DQ . Then the rate distortion 

function is defined as 

                                                                      )(min)( QIDR
DQQ                                                               (2.8.9)  

For a given source with probability )( jP , a distortion measure  kjd ,  and a maximum permissible 

value of average distortion D , the problem is to minimize the average mutual information )(QI  by 

appropriate choice of the conditional probabilities )( jkQ  subject to the constraints  

                                                                                  0)( jkQ                                                                       (2.8.10) 

                                                                             
k

jkQ )(1                                                                       (2.8.11)  

                                                                DkjdjkQjP
kj

 ),()()(
,

.                                                   (2.8.12) 

The problem has been solved in [95] using the method of Lagrange multipliers, by forming the 

augmented functional  

                                        
jkj k

j kjdjkQjPsjkQQIQJ
,

),()()()()()(                      (2.8.13)  

Where the Lagrange multipliers are the parameters j and s . In particular, the critical points will satisfy 

the equation         
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For a particular negative value of the parameter s we can generate D  and R  parametrically from the 

equations 
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kjds

kj eQ
jPDsR                                    (2.8.17)             

The minimization problem is a quite technical problem and a complete mathematical analysis can be 

found in [95] .                                            

In this study our aim is to try to interpret the cellular biochemical reaction network as a noisy 

communication channel and the cell as an information quantizer and understand how a cell decision is 

made upon processing of information through biochemical signaling. This might be useful in the effort to 

assess deviations and/or controversial data from cell survival studies, understand the reliability of a 

molecular cell death stimulus controlling the survival of a cell and use probability distributions of the 

form stimulus/decision, instead of a deterministic function that represents a “noiseless system”. Our 

case study will be the photodynamic action on a single cell.   Mathematical modeling of biological 

problems has focused on the integration of the most crucial properties of the phenomenon under study 

into a model formulated in terms of continuum ordinary or partial differential equations. In this study, 

we develop an individual-based framework for modeling PDT reaction and cell processes, that can be 

used in integrated biology to accommodate biological complexity in cancer as well as other phenomena, 

through multiple scale techniques such as hybrid cellular automata [96]. 



 
 

 
 

 

CHAPTER 3: OXYGEN TRANSPORT IN TYPE II PDT 

3.1 Clinical application and mathematical modeling  

Conventional cancer therapies include radiation and chemotherapies, surgery, and a combination of 

any or all of those therapies. The treatments themselves have important side effects, even life-

threatening. Photodynamic therapy offers an alternative, less invasive treatment for such illnesses such 

as several types of cancers, and has been recognized as an effective option for treatment of cancers and 

other diseases[43]. It involves the use of three basic components [97]: a photosensitizer, a light-

absorbing molecule that is activated by the second element, light of a corresponding wavelength, and 

third, molecular oxygen is consumed during the photochemical reaction to produce cytotoxic agents, 

thus destroying neoplastic tissue. Clinically used photosensitizers associate with plasma membrane or 

intracellular membranes of the mitochondria, lysosomes and endoplasmic reticulum (ER) and a 

significant difference between PDT and chemotherapy or radiotherapy is that it is considered to be less 

geno-toxic  since the major site of photosensitizers’ localization are the above factors and not the 

nucleus [98].                   

Mathematical modeling is essential to clearly reveal and understand the fundamental processes 

underlying the properties of living biophysical systems in general, and the reaction of photodynamic 

therapy with biological tissue, in particular. It is accepted that cell photo-killing (induced in cultured 

cells) may involve all three main cell death morphologies described, i.e. apoptotic, necrotic and 

autophagy cell death [99]. Dynamic modeling of cell fate exist, for apoptosis/necrosis [100] and for 

autophagy [101], in a single cell model. In a previous work [102] we established a model of oxygen 

transport and cell killing in Type II PDT. This model can be directly linked to these cell fate models, to 
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provide a coherent model of the major biochemical events in PDT on the basis of major components and 

the main features of the intracellular interactions. Identifying major components of the Type II PDT bio 

molecular network and interactions and then deriving cell survival/death models, by using 

computational methods, is the goal of the analysis in the following chapters.   

3.2 Study of oxygen diffusion in type II PDT 

The therapeutic effects of PDT in vivo are realized through different mechanisms which include 

direct killing of target cells, vascular shutdown and induction or modification of immune response[103]. 

Investigations of PDT under in vivo conditions are critical to understand and improve clinical 

applications. On the other hand, in vitro studies of the very complex PDT processes with cultured cells 

have attracted significant attention for multiple reasons [104] [105] [106]. Detailed study of PDT in vitro 

within a controlled cellular environment is essential to analyze the multiple signaling pathways 

underlying the cell killing effect of PDT[103]. Secondly, cell killing through PDT yields a unique case study 

of system biology in which cell repair and death in response to combined stimulations of photosensitizer 

and light can be quantitatively investigated and modeled. In response to a type II PDT treatment, cell 

death can be initiated by production of singlet oxygen and other reactive oxygen species (ROS) with 

optically excited photosensitizers in the presence of oxygen molecules[107]. In addition oxygen 

functions as the essential molecules for cellular metabolism and other biochemical processes, such as 

membrane transport, growth, cellular repair and maintenance processes, a series of activities essential 

for cell survival. Most cellular activities require energy in the form of oxygen, primarily obtained from 

the degradation of adenosine triphosphate[108]. Oxygen must be present in sufficient amounts in the 

mitochondria to maintain effective concentrations of ATP in the electron transport system[108]. If 

oxygen availability is limited, functions such as contractility, electrolyte or protein transport, motility and 

various biosynthetic activities can no longer be maintained and irreversible alterations may occur[108]. 
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Therefore, oxygen and associated transport play critical roles in the survival and death of PDT treated 

cells[103]. Thus a systematic study of oxygen transport in a single cell by taking into account of various 

molecular interactions and pathways can yield critical insights to understand the cytotoxicity and other 

effects of PDT. 

The effects of oxygen consumption in photodynamic therapy (PDT) have been considered 

theoretically and experimentally by other authors, and mathematical models of the mechanism of 

photo-oxidation have been used to calculate and estimate the sensitizer and light dose delivered to a 

tumor undergoing  PDT as well as oxygen depletion due to reaction with intracellular substrate [73, 

109]. Experimental studies have shown that low fluence rates or fractionation of the exposure may 

improve the PDT effects[110]. Indeed, several studies demonstrating the variability in time and/or space 

of ground-state oxygen 2

3O  concentration[111, 112],  sensitizer availability[113, 114] and light delivery 

to the treatment area [112] during typical therapy protocols suggest that the dynamic character of these 

quantities should be incorporated in PDT dosimetry[109]. For example, it has been proposed that the 

fact that the reaction of singlet oxygen can be monitored by measuring  2

3O   consumption, could be 

used to screen photosensitizers in vitro for desirable photophysical properties [115].  

Our analysis is based on a previously established numerical model [7], that was introduced in 

order to study the molecular interaction involved in type II PDT processes in time domain and to 

describe the cascade of events that is believed to lead to potentially cytotoxic reactive oxygen species 

reactions(ROS). That model was based on a method of rate equations proposed by Foster and others 

[43] [73] [116]. The concentrations of key molecules in both ground and excited states were solved as 

functions of illumination time with a group of coupled rate equations. By defining two decay constants 

to characterize the loss of ground-state photosensitizer and receptor oxidation, the authors have 

investigated the dependence of photo bleaching and cytotoxicity on the initial concentrations of 
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photosensitizer and incident light irradiance at the molecular level. The existing model, however, does 

not account for the oxygen transport inside and outside of the cell and provides no direct link to the 

observable cell survival curves. In this study, we present a significantly improved PDT model which 

allows detailed examination of the roles played by oxygen and associated transport in a spherical cell 

configuration [117]. Furthermore, this model includes a rate equation of cell killing probability via two 

molecular “death effectors” of single oxygen molecules or ROS and their receptors for calculation of cell 

survival ratio as a function of incident light fluence or initial photosensitizer concentrations. Numerical 

results are obtained with this model to demonstrate its utility for relating the cell survival curves to 

various parameters of molecular interactions that are critical to understand cell killing by PDT. As a 

result, the present model provides for the first time a powerful tool to quantify the effects of oxygen in 

terms of cell survival curves that can be compared to the measured data.  

 

3.3 Rate equation group 

 We have developed a rate equation based model[117] to quantify the time evolution of the 

following molecule species in a type II PDT process: photosensitizers in the singlet ground state 0S , 

photosensitizers in the singlet and triplet excited states 1S  and T , oxygen in triplet ground and singlet 

excited states 2

3O  and 2

1O  , and receptor R .  Even though the singlet excited oxygen molecules 2

1O  

my play a critical role, it is well known that other ROS species are also involved in the cytotoxicity of PDT 

directly or indirectly at mitochondria as the source and target sites (first reactive oxygen species formed 

during photodynamic therapy (PDT) is 2

1O  but other ROS are formed downstream including superoxide 

anion 
 2CO ,hydrogen peroxide, 22OH , and hydroxyl radical OH )[118]. Consequently, 2

1O  here 

should be interpreted as the ROS molecules including the singlet oxygen.  We mainly consider two 
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pathways in modeling of cytotoxicity (the studies described in the next chapters involving a group of 

molecules should expand and elucidate the understanding of mechanisms of PDT cytotoxicity). One is 

the designation of the R receptors as the representation of those molecules that reside on mitochondria 

membranes and becomes oxidized by 2

1O  to initiate cell death or apoptosis processes through various 

pathways. Another relates to the presence of 2

1O  which drive a cell to start apoptosis if the 

concentration of ROS becomes high. With these guidelines in mind, we employ 6 rate equations to 

describe the time evolution of the key molecular concentrations leading to the accumulation of oxidized 

receptors represented by R involved in the cytotoxicity through a type II PDT mechanism as the 

following[117]: 

 
  ]][[][]][[ 2

3

33

30

002

10 OTTSSOk
dt

Sd S

psapb







                                                              (3.3.1) 

  ][
1][

01

1

1 SS
dt

Sd
psa


                                                                                                                       

(3.3.2) 

 
]][[][][ 2

3

33

30

1

1

13 OTTS
dt

Td s












                                                                                                     (3.3.3) 

 
m

ms

KO

OV
ODOOT

dt

Od




][

][
][][]][[

2

3

2

3

2

32

2

1

0

0

2

3

3

2

3









                                   

                        (3.3.4) 

 
][][]][[][]][[]][[ 2

1

2

3

3

2

1

0

0

2

1

2

1

0
2

1

OCkOTOORkOSk
dt

Od
isc

s

cxpb 







                         (3.3.5) 

UORk
dt

Rd
cx  ]][[

][
2

1
                                                                                                                              (3.3.6)    



 
 

45 
 

The definitions of coefficients and their values used in the above equations have been detailed in[7] and 

are provided in the Table 1 for completeness. Use of the efficiency factor s  for the bimolecular energy 

transfer from the excited photosensitizer PS to oxygen allows study of the effect of relaxation time 3  

on the excitation of oxygen [7]. Equation (3.3.5) describes the photochemical processes that produce 

and consume 2

1O  molecules. For example, the first and second terms on the right-hand side of 

(Eq.3.3.5) are the rates of 2

1O  consumption in photo bleaching and oxidization of intracellular 

receptors. In addition, this equation also includes the reaction of 2

1O  with various oxygen scavengers 

with an average rate sck and concentration ][C .  In this model it is also assumed that the cytotoxicity 

induced in a Type II PDT process is caused primarily by the oxidization of various intracellular receptors 

at the PS binding sites, including those of the vasculature in the tumor, with the highly active 2

1O  

molecules [70]. In response, various repair mechanisms can be activated within a cell to undo the 

cytotoxic damage. When the concentration of cytotoxic agents exceeds a certain threshold in a cell, 

irreversible apoptosis or necrosis occurs[74, 119]. Consequently, the time evolution of unoxidized 

receptors ][R  should be determined by its reaction rate with 2

1O  and a repair rate U as in equation 

(3.3.6)[7]. The photo bleaching or destruction of the PS can occur by photochemical reaction of 0S  with

2

1O  in a first simplified approach, which can be described by a reaction rate pbk  in (Eq. 3.3.5). It is also 

possible that multiple types of intracellular receptors exist that react with 1O2 at different rates. 

Therefore, cxk  and ][R  should be regarded as the averaged values over different species of receptors 

involved in the PDT process[7]. The relaxation time of PS from 1S  to 0S   is given by 1  , which has been 

estimated to be about 10 ns due to the fast transitions between the singlet states. The relaxation time 

of the PS for intersystem crossing from T  to 0S , is given by 3 , and has been estimated to be in the 
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range of microseconds to milliseconds [7].   Fast relaxation of the singlet oxygen 0 has been estimated 

to be about less than 1 μs [52, 120]. The quantum yields of the 1S  to 0S , T  to 0S for the PS and the 

2

1O  to 2

3O are 10 , 30 and 0 respectively as found in the literature [121] [122]. Because no 

experimental data could be found, a small value of isc Ck ][  is used, which has minimal influence on

][ 2

1O   and ][R  over the time. 

Conditions at an initial time  from which the system of the 6 rate equations describing the physical 

system of the PDT treated cell evolves. The initial value problem needs to be specified and the initial 

conditions of Eq. (3.3.1) to (3.3.6) at the beginning of illumination ( 0t ) are given by an initial 

concentration vector of )][,0],,[0,0],([ 2

3

0 iROS .The spatial variation of the oxygen concentration is 

limited to the interior of a cell, i.e., 00 rr  , with 0r   as the radius of the spherical cell. The second 

term U  on the right hand side of Eq. (3.3.6) is set to be a very small positive constant at 1(
13  scm ) for 

avoiding appearance of negative concentrations in numerical calculations. It is verified that the small 

valued U has no effect on calculations of decay constants and cell survival ratio[117]. 

Among the six equations listed above, the first three and last two remain the same as presented in a 

previous publication[7] and the corresponding species can be assumed not to diffuse. These species 

have very short lifetimes after their formation and are not expected to diffuse a significant distance 

before their transition[123] or, in the case of singlet oxygen, react with cellular substrates[124]. More 

precisiely: in these equations, we do not consider spatial dependence of concentrations for these 

molecules for two reasons.  First, the molecules of photosensitizers and receptors are much larger and 

more massive than the small molecules of 2

3O  and therefore the related diffusion will take much longer 

time to become significant on PDT process. This argument should also apply to the excited 
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photosensitizersT  acting as a substrate for transferring energy from photons to oxygen molecules 

(with a relaxation time 3 as discussed before). With respect to 1S  and 2

1O , these highly chemically 

active molecules have very fast relaxation rates to ground states. Based on literature, their respective 

relaxation times of 1  and 0  are much smaller than 3  , and thus prevents them from diffusing into 

locations other than the immediate neighboring sites. With these arguments we consider the effect of 

diffusion for the ground-state oxygen 2

3O  only (Figure 3.3.1).       

                      

Figure 3.3.1. A schematic diagram to illustrate the molecular interaction and diffusion in a spherical cell 

model[125].  
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3.4 Oxygen diffusion and boundary conditions 

Having discussed the reactions and rate equations of the photochemical dynamics and the 

corresponding constraints on the molecular concentrations and constants, we know analyze the 

boundary conditions, to gain some insight on the requirements that need to be expressed in terms of 

transport parameters of the problem. Diffusion of 2

3O  in cells has attracted research interests in 

consideration of cellular metabolism and other biochemical processes. Quantitative modeling has been 

pursued in a spherical configuration in which a spherical symmetry of oxygen distribution or 

)]([)]([ 2

3

2

3 rOrO 


 was assumed to simplify mathematical treatment[125]. With this model one 

considers the rate of oxygen uptake by molecules in the metabolism and processes unrelated to PDT 

using a nonlinear Michaelis-Menten term of two adjustable parameters: mV represents the maximum 

rate of oxygen uptake as )]([ 2

3 rO  while mK  yields the value of ][ 2

3O for the Michaelis-Menten 

term to reach a half-maximum uptake rate[125]. We adopt this spherical cell configuration to study 

oxygen diffusion in a type II PDT process using the equation for molecular oxygen. A word of caution 

here: A limitation is that Michaelis–Menten kinetics relies upon the law of mass action which is derived 

from the assumptions of free (Fickian) diffusion and thermodynamically-driven random collision. 

However, many biochemical or cellular processes deviate significantly from such conditions. For 

example, the cytoplasm inside a cell behaves more like a gel than a freely flowable or watery liquid, due 

to the very high concentration of protein (up to ~400 mg/mL) and other “solutes”, which can severely 

limit molecular movements (e.g., diffusion or collision). This causes macromolecular crowding, which 

can alter reaction rates and dissociation constants [126] [55] [127].    
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To establish an appropriate boundary-value problem related to oxygen diffusion, boundary 

conditions at the cell center ( 0r ) and membrane ( 0rr  ), [80]  are introduced in the following to 

complement the Eq. (3.3.4):  

0
][ 2

3






t

O
 if 0r                                                                                                                             (3.4.1) 

]}[]{[
][

2

3

2

32

3

OOM
t

O
D 




 if 0rr                                                                                           (3.4.2) 

where M is the parameters of oxygen permeability and ][ 2

3 O refers to the outside concentration 

(the membrane allows small molecules like oxygen to pass through easily and it is permeable to this 

molecule). The oxygen molecules move into the cell and out of the cell at the same rate, and a dynamic 

equilibrium will exist. Unless, the cell consumes some of the oxygen as it comes into the cell, and 

therefore more oxygen will move into the cell than out of the cell.  If ][ 2

3 O distributes outside the cell 

according to a homogeneous diffusion process with D as the extracellular diffusion constant, one can 

show that the boundary conditions can be further simplified to the following: 
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Where we assumed iOO ][][ 2

3

2

3   as the oxygen concentration far from the cell. In this study the 

permeability M is used as one of the adjustable parameters to account for the variation of topology of 

cell membrane due to the presence of microvilli and ruffles. For example, it has been suggested that 

ruffled cell membrane can reduce its permeability to oxygen because of extended area using a 2D 
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random walk model[128]. For results presented here, we vary the parameter M from a “classical” value 

of   )/(102 2 scm  [129] to )/(102 5 scm  to allow a detailed study of oxygen permeability across 

the cell membrane. Fig. 3.3.1 illustrates schematically various molecular reactions and processes 

involved in a type II PDT considered here with the coefficients and parameters characterizing the 

interactions and oxygen transport in a spherical cell.  

3.5 Decay constants of photosensitizer and receptor concentrations 

 The group of differential equations from (1) to (6) can be solved numerically in time domain 

under the boundary conditions of Eq. (8) to obtain a solution vector of 6 molecular concentrations[117]. 

The effects of oxygen diffusion within the cell and across the membrane on the solution vector of 

concentrations are investigated with this model for quantitative understanding of the molecular kinetics 

related to the type II PDT. We use the partial differential equation (PDE) solver (pdepe) by MATLAB (The 

MathWorks, Natick, MA) to obtain the solution vector as a function of illumination time t from the start 

of illumination at t=0 to 3000 (s). Two components of the solution vector, ][ 0S and ][R , are of 

particularly interest to our study whose concentration and time dependences can be used to quantify 

the phenomena of photo bleaching and cytotoxicity in a type II PDT process. Consequently we define 

two decay constants of St  and Rt  for characterization of the initial decrease of ][ 0S  and
 

][R , 

respectively, caused by photon absorption[7]. The two decay times St  and Rt  are defined as the times 

for ][ 0S  and
 

][R
 to be reduced to 1% of their initial values:  

)0]([01.0)]([ 00 StS S                                                                                                                (3.5.1)
           

)0]([01.0)]([ RtR S                                                                                                                    (3.5.2) 
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These decay times are functions of initial drug dose and irradiance of incident light in terms of iS ][ 0 and 

 at the binding locations and have been used to quantitatively study the phenomena of 

photobleaching and cytotoxicity in modeling studies[7]. Utilization of St  and Rt  
allows detailed 

mapping of these decay constants on the grid of the two key parameters mentioned above: photon 

density   proportional to the incident light irradiance and the initial photosensitizer concentration 

iS ][ 0 for inducing cytotoxicity[117]. Effects of other parameters have been studied by mapping the two 

decay constants at different values of the oxygen diffusion constants D and D , the membrane 

permeability M  and the maximum rate of oxygen uptake mV . 

3.6 Cell killing model 

 The equation group from (3.3.1) to (3.3.6) can be solved to characterize the main molecular 

interaction involved in type II PDT. While some of the molecular concentrations are measurable such as 

][ 0S   and ][ 2

3O , experimental verification of these quantities can be difficult, if not impossible, and 

they relate indirectly to the ultimate consequence of PDT for cell killing. It is thus highly desired to 

develop a cell killing model that can link the molecular concentrations to the cell survival ratio which can 

be measured with an in vitro cell model[117]. To build this model we employ survival analysis and we 

need to define the “cell survival probability N ” so that cell biological survival is  unambiguous. Cell 

death (necrosis/apoptosis/autophagy as discussed in later chapters) is considered an event in the 

survival analysis and only a single event occurs for a single cell model, after which the cell is dead. 

Recurring event situations are not applicable in this model. We mainly consider two forms of 

cytotoxicity related to PDT induced by ROS. One is due to the accumulation of oxidized receptors for 

initiation of apoptosis with the rate of cell killing linearly proportional to the concentration of oxidized 

receptors [75]. Another is described by a nonlinear term similar to the Michaelis-Menten terms used in 
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triplet oxygen equation, which represents the receptor-independent contributions to the rate of cell 

killing as a result of ROS stress[130]. This term becomes significant as the concentration of ][ 2

1O or ROS 

becomes large relative to cK . The nonlinear term therefore allows the inclusion of the coefficient cK to 

simulate the effect of cell repair. We include these two terms into the following equation to quantify the 

PDT cytotoxicity as 

  
c

c

i KO

OV
N

R

R

dt

dN




][

][
)

][

][
1(

2

1

2

1

0
                                                          

                                              (3.6.1) 

where N  can be interpreted as either the cell survival ratio or probability of cell survival with the initial 

condition given by 1)0( N , the coefficients of 0   and cV  are parameters that can be adjusted to vary 

the weights of the two terms and cK  is used for characterization of the cell’s ability to resist or repair 

damage by ROS. This is a first order linear differential equation and the solution can be written as:  
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(3.6.2)  

The values of these coefficients are given in Table 1 for results presented below. The above equation can 

be solved simultaneously with equations of (3.3.1) to (3.3.6) under the boundary condition of Eq. (3.4.3) 

and (3.4.4) to obtain the cell survival ratio N  as a function of incident light fluence F . The fluence F  

is obtained from the illumination time t  and the irradiance of incident light or the photon density   as

tF  .   

3.7 Positive definite test of the solution vector in time-domain 
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 Many  investigations in the field of partial differential equations has been focused on maximum 

principles for elliptic and parabolic equations. Weak and strong maximum principles for elliptic and 

parabolic equations have been proved by several authors that lead to uniqueness theorems especially 

for linear and nonlinear diffusional equations [131, 132] [133] .  Eq. (3.3.1) to (3.3.6) form system of 

parabolic partial differential equations (PDE) with the boundary condition defined in Eq. (3.4.3-3.4.4). It 

is therefore of interest to inquire under what conditions the equation group could produce a solution 

vector of positive definite components to be consistent with their definitions[103]. To derive these 

conditions, we employ a strong maximum principle recently proved for parabolic PDE [134]. Each of Eq. 

(3.3.1) to (3.3.3) and (3.3.5) to (3.3.6) in the group can be casted into a parabolic PDE form like Eq. 

(3.3.4) if we add a Laplace term with a positive diffusion constant of negligibly small value 

)/(101 215 scm  [103]. This allows us to use Eq. (3.3.4) as an example for application of the strong 

maximum principle by replacing ][ 2

3O  with a function ),( trf which is assumed to be continuous over 

the domain of )0,0( 0 trr  . We first rearrange Eq. (3.3.4) into the following form:   

                 0][])[( 2
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If  0][ 2

1

0

0 O



 then the above equation can be turned into an inequality as  
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(3.7.2) 

where  ][),(
3

T
Kf

V
tr s

m

m




 


  . The strong maximum principle applies to the above inequality if D

and  are locally bounded and 0 , which yields the following conclusion[134]:   0),( trf for all 
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0tt   if 0),( trf at 0tt   .  According to this result a molecular concentration ),( trf remains 

positive once it becomes positive as long as the following two conditions are satisfied: (i) other coupling 

molecular concentrations (such as ][ 2

1O ) stay positive to ensure that Eq. (3.7.1) can be converted into 

the inequality (3.7.2); (ii) the coefficient   is positive. A quick examination shows that each of the Eq. 

(3.3.1) to (3.3.6) can be converted into the form of inequality (3.7.2) and both conditions can be satisfied 

if the concentrations of the coupling molecules are initially positive or become positive after t=0. One 

should note that the strong maximum principle applies only to the open domain of the spatial variable

r  )0( 0rr  . At the boundary of spatial domain 0rr  , a molecular concentration is not prohibited 

to become negative [103]. 

3.8 Results and discussion 

Time-domain results during light illumination for the molecular concentrations: We solve the 

boundary-value problems of molecular concentrations defined by the group of Eq. (3.3.1) to (3.3.6) 

under the boundary condition of Eq. (3.4.3-4) in the time domain from 0t to )(3000 s  with 1000 

steps on a logarithmic scale to reduce numerical errors. The spatial domain between the cell center at 

0r  to the membrane boundary at )(5 mr   (μm) is divided into a linear mesh of either 10-step or 

40-step. Fig. 3.8.1 presents the time dependence of 6 normalized molecular concentrations calculated 

with the 40-step spatial mesh with the oxygen diffusion shut off by using negligible diffusion constants 

of D  and D  . The concentrations are plotted against the illumination time t  in two groups: the 

ground-state molecules of ][ 0S , ][ 2

3O  , 
][R  and the excited ones of ][ 1S , ][T , ][ 2

1O . Three 

intracellular locations are chosen to exhibit the spatial variation of concentrations. The lack of oxygen 

diffusion requires the use of high initial oxygen concentration at )(100.5][ 317

2

3  cmO i  to 

observe significant decay of ][ 0S  and ][R  for )(3000 st  . It can be seen easily from the result 
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presented in Fig. 3.8.1 that the lack of oxygen leads to progressively severe hypoxia for locations away 

from the cell boundary at 0rr  . This in turn affects the production of singlet oxygen so that the 

maximum values of ][ 2

1O decreases from 85.2% at 0975.0 rr   to 24.9% at 0r  in comparison to 

the maximum ][ 2

1O  at the boundary of 0rr  . Similarly the decrease of unoxidized receptor 

concentration 
][R  becomes less steep as one moves towards the cell center at 0r . By raising the 

oxygen diffusion constants towards 510  to )/(10 26 scm
, the intracellular heterogeneity of oxygen 

distribution starts to disappear as confirmed by the results calculated at different locations (not shown 

here). We point out that all of the concentration values shown in Fig. 3.8.1 and other similar results 

remain positive, as expected based on the strong maximum principle. 
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Figure 3.8.1 Time dependence of the solution vector at three intracellular locations using a 40-step 

spatial mesh and illumination starting at 0t : (a),(c) and (e): concentrations of ground-state molecules 

normalized by their initial values; (b), (d) and (f): concentrations of excited molecules normalized by 

their maximum values on the spatial mesh. The values of the parameters are given by: 

)(101 36  cm , )(1000.5][ 311

0

 cmS i , )/(1000.8 212 scmD  , 

)/(1000.2 212 scmD  , )/(1000.2 2 scmM  , )(1006.5][ 317

2

1  cmO i , 0mV . 

The values of other coefficients are given in the Appendix A and the red lines indicate the thresholds for 

the decay constants. 
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In Fig. 3.8.2 we compare the molecular concentrations calculated at the boundary of 0rr   

obtained with different spatial meshes of 40- and 10-step to increase simulation speed. The values of 

][R  indeed become negative at the cell boundary for ][R  at t ~ 500 (s) for both spatial meshes. By 

increasing the spatial mesh density or the step number from 10 to 40, the number of negative ][R

values, however, can be reduced from 20 to 7 among the 1000 data points in the time domain. In all 

cases the magnitude of negative ][R  values are less than 10-3 of its initial value. These results suggest 

that the negative ][R  calculated from the boundary-value problem defined here can be attributed to 

the numerical rounding errors. Furthermore, the appearance of small negative values of ][R  does not 

affect our calculation of the decay constant and use of 10-step mesh can significantly reduce 

computation time with little reduction in accuracy. Consequently, we adopt the 10-step mesh for the 

calculation of decay constants presented below. 

To illustrate the effect of diffusion, we show in Fig. 3.8.3 the time-domain data with diffusion 

constants typically used in previous studies of oxygen diffusion[129, 135]. For these high values of D  

and D , sufficient oxygen is supplied through diffusion so the time evolution of the concentration 

vector is nearly independent of spatial location. Consequently, Fig. 3.8.3 presents only the results 

calculated at the middle location of the spherical cell. Because of the efficient diffusion, the influence of 

initial oxygen concentration iO ][ 2

3  is much reduced. In the previous study we proved that the time 

evolution and decay constants of
 

][ 0S  and ][R  is very sensitive to the values of iO ][ 2

3  without 

consideration of oxygen diffusion, as shown by Figs. 5 and 6 in [117]. Those data are significantly 

different from the results presented in Fig. 3.8.3 in which a large difference in iO ][ 2

3  leads to similar 

time evolution of molecular concentrations. Nevertheless, iO ][ 2

3  can affect the levels of ][ 2

1O  and 

subsequently the cell survival ratio as described by Eq. (2.6.1). 
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Figure 3.8.2 Time dependence of the solution vector at the cell boundary )( 0rr  using two spatial 

meshes of 10-step and 40-step: (a) and (c): normalized concentrations of ground-state molecules; (b) 

and (d): normalized concentrations of excited molecules. All parameters and coefficients are of the same 

values as those in Fig. 3.8.1. 
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Figure 3.8.3. Time dependence of the solution vector at the middle of the cell )
2

( 0rr  using the 40-step 

mesh and )/(108 26 scmD   and )/(1000.2 5 scmD   for different initial oxygen 

concentration: (a) and (b): )(100.5][ 317

2

3  cmO i ; (c) and (d): )(100.7][ 316

2

3  cmO i . All 

other coefficients are of the same values as those in Fig. 3.8.1. 
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Mapping of decay constants on the mesh of iS ][ 0  and  : As can be seen from the results in Figs. 3.8.1 

to 3.8.3, the time evolutions of photosensitizer concentration ][ 0S  and unoxidized receptor 

concentration ][R  are often dominated by steep reduction with increasing time of illumination. This 

prompts us to define two decay constants of St  and  Rt  to characterize efficiently the two key 

processes in the type II PDT at the molecular level: photobleaching related to ][ 0S  and cytotoxicity 

related to ][R . The group of Eq. (3.3.1) to (3.3.6) is solved in time domain to obtain  St  and  Rt as the 

times for ][ 0S  and ][R  to be reduced to 1% of their initial values at various values of the initial 

photosensitizer concentration  iS ][ 0  and photon density  . The time-domain calculations and 

extraction of St  and  Rt  are iterated on a 20x20 semi-log mesh of iS ][ 0  and   with iS ][ 0 ranging 

from 2.0x1012 to 1.0x1015 (cm-3) and   ranging from 1.0x105 to 2.0x107 (cm-3). The maximum values of 

the chosen ranges correspond respectively to about 5 (μg/ml) for Photofrin used as photosensitizer and 

about 80 (mW/cm2) for the incident light irradiance as it relates to  [7]. Different values of the oxygen 

diffusion constants, permeability and strength of the Michaelis- Menten term parameters are employed 

for the time-domain calculations carried out at two locations of cell center 0r  and boundary 0rr  . 

As a reference, Fig. 3.8.4 presents the results of decay constants obtained with 

)/(100.8 26 scmD  , )/(1000.2 25 scmD  ,  and )/(1000.2 2 scmM   and 

)(109.2 1318   scmVm  based on previous reports[129] with a low initial oxygen concentration 

of )(100.7][ 316

2

3  cmO i . Since St  and  Rt  exhibit similar dependences on iS ][ 0  and  among 

all three cell locations, only those at the cell center of 0r  are presented in Fig. 3.8.4. In contrast, the 

mapping of decay constants are presented in Figs. 3.8.5 and 3.8.6 at both cell center and boundary with 

different values of D , D , iO ][ 2

3  and M . 
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Figure 3.8.4. The decay constants of (a) St  and (b) Rt  versus the initial photosensitizer concentration 

iS ][ 0  and photon density   at the cell center )0( r . The values of parameters are given by D =8×

10-6 (cm2/s), D =2×10-5 (cm2/s), M =2.00×10-2(cm/s), iO ][ 2

3 =7.00×1016 and mV =2.9×1018 (cm-

3⋅s-1) with all other coefficients given in the Appendix A. 
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Figure 3.8.5. The decay constants of St  and Rt versus the initial photosensitizer concentration iS ][ 0  

and photon density   at the cell center )0( r  for (a) and (b); at the cell boundary )( 0rr   for (c) and 

(d). The values of other parameters and coefficients are the same as those in Fig. 3.8.4 except the 

following: )/(1000.8 27 scmD  , )/(100.2 26 scmD  . 
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Figure 3.8.6. The decay constants of St  and Rt  versus the initial photosensitizer concentration iS ][ 0  

and photon density   at the cell center )0( r  for (a) and (b); at the cell boundary )( 0rr   for (c) and 

(d). The values of other parameters and coefficients are the same as those in Fig. 3.8.5 except the 

following: )/(1000.2 5 scmM  . 
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The results presented in Figs. 3.8.4 to 3.8.6 demonstrate the utility of the modeling tool developed here, 

which makes it possible to quantitatively investigate and compare the different effects on the molecular 

aspects of PDT by variation of parameters related to the supply and consumption of oxygen. We 

examine the mapping results without the presence of additional oxygen consumption described by the 

Michaelis-Menten term by setting mV =0 and find no significant changes from the results in Fig. 3.8.6. It 

appears that the oxygen consumption via metabolism has limited effect on the decay of ][ 0S  and ][R  

in PDT for the mV  used and causes no significant differences among the decay constants calculated at 

different cellular locations. We also observe that for the ranges of iS ][ 0  and   chosen, the decay 

constants are of much higher sensitivity to iS ][ 0  than that to  , which indicates sufficient supplies of 

photons and oxygen. With the Michaelis-Menten term, we further examine the effect of oxygen 

diffusion by reduction of the diffusion constants by 10-fold and the permeability by 1000-fold. These 

variations lead to observable changes of the decay constants at different cell locations as shown in Figs. 

3.8.5 and 3.8.6. It is interesting to note that the weakened oxygen transport can cause faster photo 

bleaching but slower oxidization of the receptors R  at the cell center than those at the boundary as the 

photon density or incident light irradiance is increased. 

The cell survival curves: Accurate modeling of cell killing by PDT remains a challenging task 

because of the complexity of the process. As our first effort towards an eventual solution, the group of 

Eq. (3.3.1) to (3.3.6) and (3.6.1) are solved under the boundary conditions described by Eq. (3.4.4) to 

obtain the cell survival ratio or probability N  as a function of illuminating time t. The solution is then 

converted into a function of incident light fluence, )(FN , by converting t  into light fluence as  F = 

4x10-9 t  in the unit of (J/cm2) with   and t  taking the unit of (cm-3) and (s), respectively[7]. After 

detailed analysis of the results calculated with different coefficients used in Eq. (3.6.1), we chose the 
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values of 0 , cV , and cK  as given in the Table 1  to obtain numerical results that are comparable to 

the measured data published by other researchers [105, 136, 137]. Fig. 3.8.7 presents typical results of 

cell survival curves obtained with )(100.1 12

0

 s  and different values of  , iS ][ 0 ,
 iO ][ 2

3  , 

D , D  and M . Each set of curves consists of triplicate lines calculated at three spatial locations of 

cell center, middle and boundary with each assumed to be the targeted sites of PDT cytotoxicity. The 

cell survival curves presented in Fig. 3.8.7 can be divided into two parts that relate separately to the two 

terms on the right-hand side of Eq. (3.6.1). The first term is linearly proportional to ][R  and determines 

the slope of the initial exponential decrease of N for small F. As F rises, the second term related to 

][ 2

1O  concentration or ROS stress starts to contribute to the killing rate and causes an accelerated drop 

of the survival curve. 

From Fig. 3.8.7(a) to 3.8.7(d), we show in each diagram three sets of curves calculated at different 

photon density values with different parameters of initial oxygen concentration and diffusion constants. 

It is clear from these results that increasing photon density leads to increasing survival ratio at the same 

fluence, which is widely known in the cell study of PDT as a result of poor oxygen supply for illumination 

at high irradiance [105, 136, 137]. The effect of poor oxygen supply or hypoxia can be further seen by 

comparing Fig. 3.8.7(b) to 3. 8.7(a) where iO ][ 2

3  is reduced by a factor of 100 to yield significant 

enhancement of cell survival. The oxygen diffusion constants and permeability also influence cell 

survival as demonstrated in Fig. 8(c) and 8(d) in which D , D  and M  are reduced. These results show 

higher cell survival ratios correlates to weakened oxygen diffusion and variation of cell killing among 

cells with different target site locations due to spatial heterogeneity in oxygen distribution. Finally Fig. 

3.8.7(e) and 3.8.7(f) present the modeling results using different initial photosensitizer concentrations 

and diffusion constants. Fig. 8(a) reveals that increasing iS ][ 0  leads to reduced cell survival as expected. 
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But an 142-fold increase in the supply of iS ][ 0  is not accompanied by a similarly enhanced cell killing as 

demonstrated by the relatively small difference between the two sets of curves labeled with 10][ iS  and 

20][ iS   in Fig. 3.8.7(e). The reduced oxygen diffusion in Fig. 3.8.7(f) exhibits marked difference among 

the triplicate lines obtained at different cell locations, especially for the low value of iS ][ 0 at 30][ iS , 

which indicates a strong competition for oxygen between the cytotoxicity of PDT and unrelated 

metabolism processes represented by the Michaelis-Menten term in Eq. (3.3.4). 
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Figure 3.8.7. The cell survival ratio curves calculated with )(109.2 1318   scmVm  and 

different photon densities  , initial photosensitizer concentrations iS ][ 0  and oxygen parameters. From 

(a) to (d): )(100.2 36

1

 cm , )(100.7 36

2

 cm , )(100.2 37

3

 cm , 

)(100.7][ 313

0

 cmS i . For (e) and (f): )(100.1][ 315

10

 cmS i , )(100.7][ 312

20

 cmS i , 

)(100.1][ 312

30

 cmS i , )(100.5 36  cm . Other parameters in (e) and (f) are the same as 
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those in (a) except the following: (f) )/(108 27 scmD  , )/(102 26 scmD  . All other 

coefficients are given in the Appendix. Each set of curves marked with either  or iS ][ 0  consists of 

three lines calculated at different cell locations: solid: 0r ; dot: 
2

0r
r  ; dash: 0rr  . 

To further demonstrate the utility of the PDT model presented here, we show in Fig. 3.8.8 a comparison 

of our numerical results with the experimental data reported by Qin et al. which were obtained with 

Lymphoma cells treated by Photofrin®-PDT [105]. The laser irradiance at the wavelength of 635nm was 

varied to adjust fluence with a fixed illumination time of 30 (s). Fig. 3.8.8 re-plot the cell survival data 

measured by the clonogenic assay method as presented in Fig. 3B of[105]. We carry out time domain 

calculations with 300  t  (s) at three cell locations and plot )30( tN  versus iS ][ 0  as two sets of 

survival curves in Fig. 3.8.8. The two different values of photon density   used for the numerical results 

are based on the fluence values of F  =75 and 300 (mJ/cm2) as reported in[105]. As can be seen from 

Fig. 3.8.8 that the present PDT model agrees reasonably well with the measured cell survival data for the 

case of high fluence at F =300 (mJ/cm2) by adjusting the values of iO ][ 2

3  and 0  from those used in 

Fig. 3.8.7(a). For the lower fluence case the model overestimates the cell killing which could be 

attributed to the use of homogeneous and spherical cell configuration and/or the lack of sufficient 

account of cell repair mechanisms. Despite this deficiency, one can still see that the present model 

provides an efficient and powerful tool to quantify the dependence of cell survival ratios on various 

parameters of light, photosensitizer and oxygen for in vitro cell studies by type II PDT. 
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Figure 3.8.8. Comparison of two calculated cell survival curve sets with the measured data represented 

by the symbols by Qin et al. All parameters used in the numerical calculations are the same as those in 

Fig. 8(a) except the following: )(100.8 12

0

 s  and )(100.4][ 317

2

3  cmO i . Note that the 

photon density
51025.6   and )(1050.2 36  cm  corresponds respectively to fluence F = 

75 and 300 (mJ/cm2) while )(100.4][ 312

0

 cmS i  corresponds to 20 (μg/ml) using the molecular 

mass of Photofrin as 3000 (g/mol). Each set of curves marked with   consists of three lines calculated 

at different cell locations: solid: 0r ; dot: 
2

0r
r  ; dash: 0rr  . 
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3.9 Conclusion 

Strictly speaking, the claim that the action mechanism of PDT at the tissue level is via the 2

1O

pathway in vivo has never been proven since nobody has been able to detect 2

1O  in vivo since it is 

difficult to apply 2

1O scavengers in sufficient concentrations in vivo[48]. However, the oxygen 

dependency of the PDT effect is the same in vivo as in vitro as it has been demonstrated [138, 139]. In 

this chapter we present a significantly improved model of type II PDT by including oxygen transport and 

a quantitative description of cell killing using a spherical cell configuration over the previous efforts by 

other researchers and us [7, 73, 140]. A group of differential equations with appropriate boundary 

conditions is developed to simulate the time evolution of key molecule concentrations and oxygen 

transport as a coupled system. This allows us to extract the decay constants of photosensitizer 0S  and 

oxidized receptors R to quantify the photo bleaching and cytotoxicity related PDT within the ranges of 

experimentally controllable parameters of iS ][ 0  and   with different oxygen and transport 

parameters. The consistency of the equation group is examined by determination of the conditions for 

obtaining nonnegative concentrations. In addition, the present model includes a cell killing equation in 

which the excited singlet oxygen is used as the representative molecules of ROS and linked to the cell 

killing rates through two different pathways. Using this model one can calculate the cell survival curves 

from the concentrations of unoxidized receptors
 

][R  and the singlet oxygen molecules ][ 2

1O

representing the ROS stress. More importantly, the modeling results can be compared directly to the 

experimental results based on the measurement of oxygen or singlet oxygen concentrations and cell 

survival ratios or used for design of different in vitro studies of PDT. Thus the new model has the 

capacity to be used as a platform to study in vitro the complex molecular interactions leading to cell 

killing by type II PDT in the presentation of oxygen transport. Further improvement of this model for 
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detailed analysis of cell killing through PDT can be achieved by considering the molecular pathways 

underlying cell death and repair and heterogeneous distribution of the target sites in the cell.  



 
 

 
 

 

CHAPTER 4: CELLULAR DECISION MAKING AND MODELING CELL DEATH 

 4.1  Rate Distortion Theory  

Information can be defined in terms of its ability to increase the probability of something being 

true[141] and it is carried on a channel which is a physical mechanism for communication. A channel is 

distinguished by having a limit on its ability to carry information and by the fact that it is susceptible to 

random interference, called noise[141]. Whenever energy is transferred (produced or consumed) 

information is transferred. In PDT, light absorption energy is transferred from the photosensitizer to 

oxygen and other molecules, through a cascade of reactions in the environment of a cell. The “source” 

treatment parameters generate information that the system of molecular network and interactions 

must communicate to the “receiver” which is the cell or human tissue. The information encoded in the 

light and the photosensitizer as the source “word” or “code” (death signal) is transformed into a form 

(activated photosensitizer) that can be transmitted through the “channel” of molecular interactions and 

concentrations, and when decoded by molecular “thresholds”, it can be converted to a channel output 

that has the form of a cell state (necrosis, apoptosis, autophagy, survival) in relation to the tissue 

environment or human body. In order to determine quantitatively whether or not the performance-

efficiency of this bio-communication system is satisfactory, it is necessary to assign numerical values to 

the various statistical variations and errors that the system may make. In rate distortion theory, it is 

expected that a distortion measure is applicable to a particular source-channel -receiver combination , 

which in this case, it has to account for system structure, geometry, forcing functions, initial, boundary 

and environmental conditions [87],etc. The statistical mechanism that governs the generation of the 

source outputs (mean and variance of the treatment parameter),and the distortion measure that 

penalizes the bio-coding errors and determines the fidelity of the reproduction of the cell killing signal 
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need to be quantified specifically in order to have a complete description. The source produces the 

stimulus or stimuli that although they are continuous random variables (e.g. levels molecular 

concentrations) they can be discretized by taking measurements at different times during treatment. 

Eventually, we want to design an optimal treatment strategy that leads, through intracellular 

biochemical reactions, to reproduction of the PDT death signal output by the cell, with an average 

distortion that does not exceed a specified upper level D , for a single tumor cell model or a tumor cell 

population. To quantitatively answer this question, usually  it is the rate distortion function )(DR  which 

is of fundamental importance in information theory. )(DR  is the effective rate at which the source 

produces information and passes it to the user, subject to the constraint that the user can tolerate an 

average distortion D [95].  In this frame, it will be the effective rate at which the molecular 

concentrations do signal apoptosis/necrosis/autophagy when the cell can faithfully reproduce this signal 

only if the distortion does not exceed D . The rate distortion function is related to entropy. Entropy H is 

the rate at which the source produces information subject to a requirement of perfect reproduction of 

the initial signal (therefore 0D and HR )0( )[95]. The treatment pattern of the a priori setting 

parameters (photo-density, photosensitizer concentration, etc.), is related to the data bio-compression 

of the death signal through molecular interactions, and the classification of the signal as to cell death or 

cell survival is done with a possible statistical error that is assigned a numerical penalty (distortion 

function d ) and within bounds for the rate at which this treatment information can be sent 

,compressed-decompressed (rate distortion function )(DR  ) given the tolerance of the cell (distortion 

D ).  
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4.2 Cells as Biochemical Info systems 

Besides the therapeutic parameters and the environment of the cell, it is also the inherent 

nature of a cell as a physical system, such as the genetic pattern, that carry information  which the cell 

has the ability to gather, store and utilize [87]. The cell has stochastic and deterministic dynamical 

features, such as intracellular molecular, reactions, forces, boundary conditions. Modeling of decision 

mechanism concerning the state of a cell (apoptosis, necrosis, living cell, etc.) can only be made with less 

than adequate knowledge of parameters that have a stochastic nature [87]. This knowledge is 

information which is measured by entropy. The entropy of all biochemical processes in the cell is always 

positive and information fluxes are formally equivalent to negative entropy [142]. In the case of PDT, the 

photo-chemically induced molecular signaling distorts the entropic steady state of the cellular system in 

the unfavorable direction. This entropy “penalty” must be compensated either by net entropy flowing 

into the system (through exchanges of energy and materials with the environment) or by cell de-

organization [142], depending on the thermo dynamical feasibility of these options. The entropically 

regulated cell-de-organization occurs along the thermodynamic path of least resistance [142]. 

In the case of a communication channel between a source from which the information takes its 

origin (drug administration and photo-irradiation resulting in a vector stimulus of molecular 

concentrations) and a receiver to which the information is delivered (cell and cell survival/death 

decision probability), according to Zipf’s law, the distribution of “words” (molecular interactions and 

levels of concentrations) is due to the tendency to convey information with least communication 

effort[143]. We represent this communication effort by the mean amount of information that  

knowledge of the value assumed by the random variable Y = cell decision, supplies about the value 

assumed by the random variable x = vector of stimuli, which is the quantity of mutual information 

),( YXI  that has to be minimal. Therefore it is the mutual information between stimuli and cell 



 
 

75 
 

decision that is minimized and drives the cellular system as a communication channel , rather than fixed 

predefined molecular pathways which rather encode and decode these dynamics [87]. This cell 

sensitivity and response to photo-pharmacological insult and its biochemical cascades, can be perceived 

as a cell decision mechanism for death/survival decision, that requires for its activation,  minimal mutual 

information ),( YXI  between the stimulus of the death inducers X  and the cell decision Y  .(In the 

case of cancer cells, a resistance mechanism exist that will be discussed later). The minimization of the 

mutual information as an application of rate distortion theory to decision making mechanisms in biology 

has been adapted for testing a framework for designing and analyzing binary decision-making strategies 

in cellular systems [87], for the information-theoretic characterization of the optimal gradient sensing 

response of cells [92] and for the rate distortion approach to protein symmetry [144] , [145] among 

other applications . The mutual information of two random variables in general, measures the 

information that X  and Y  share: it measures how much knowing one of these variables reduces the 

entropy of the other. This reduction of the entropy will be compensated by the cell either by interaction 

with the environment, while it is in a vulnerable state and its survival probability decreases, or by cell 

death. The rate distortion function )(DR  is the effective rate at which the source generated stimuli 

carry information subject to the requirement that its output must be reproduced with fidelity D .  

4.3 A Brief Summary of Major Molecular Pathways and Biochemical Events induced by PDT  

The underlying mechanisms behind the cytotoxic effects displayed during photodynamic 

therapy on the cellular level are described schematically as Sen(sensitizer)  Sen* (activated 

photosensitizer)  Cytotoxic Agents  Biological Damage  Cell Death [98]. This sequence of events 

involves several intracellular factors and molecular interactions.  

Singlet Oxygen. A major cytotoxic agent generated during PDT is the singlet oxygen. Singlet oxygen is 

produced during PDT via a triplet-triplet annihilation reaction between ground state molecular oxygen 



 
 

76 
 

(which is in a triplet state) and the excited triplet state of the photosensitizer. DNA damage has been 

reported several many authors for different photosensitizers [146, 147] [148] [149] [150] and the time 

course of formation by singlet oxygen of single strand breaks has been recorded from 0 to 120 minutes 

[151].  

Apoptosis Extrinsic and Intrinsic Pathways. Caspases are the main effectors of apoptosis. Caspases can 

be activated by external stimulus through two major pathways: (1) extrinsic pathway: ligand-dependent 

or receptor-induced activation through receptors, (2) intrinsic pathway: mitochondria-dependent 

activation through cytochrome c (cyt c) release due to stress/irradiation/inflammation. Proteins of p53 

suppress Bcl-2 and activate Bax, or in other words, p53 upregulate Bax and downregulate Bcl-2 to 

promote apoptosis. [152] [153] 

The extrinsic pathway is initiated through ligation of the death receptor family receptors by their 

respective ligands. Amongst others this family includes the tumour necrosis factor receptors, 

CD95/Fas/APO-l and the TRAIL receptors. Receptor ligation is followed by the formation of the death 

inducing signalling complex (DISC), which is composed of the adapter molecule FADD and caspase 8. 

Recruitment to DISC activates caspase 8, which in turn either directly cleaves and activates the effector 

caspases, or indirectly activates the downstream caspases through cleavage of the BH3 protein Bid, 

leading to engagement of the intrinsic pathway of apoptosis. This intrinsic pathway of caspase activation 

is regulated by the pro- and anti-apoptotic Bcl-2 family proteins. These proteins induce or prevent the 

release of apoptogenic factors, such as cytochrome c or Smac/DIABLO, from the mitochondrial 

intermembrane space into the cytosol. The intrinsic pathway is triggered by stress stimuli, including 

growth factor deprivation and DNA damage. The release of mitochondrial cytochrome c facilitates the 

formation of the apoptosome complex (composed of the adapter molecule Apaf-1 and caspase 9), which 

then cleaves and activates the effector caspases. PDT has been shown to directly damage mitochondria-
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associated anti-apoptotic Bcl-2 proteins, thus facilitating Bax/Bak-mediated MMP (mitochondria 

membrane permeabilization) and the subsequent release of caspase activators, such as cytochrome c 

and Smac/DIABLO or other pro-apoptotic molecules, including apoptosis-inducing factor (AIF). On the 

other hand, when primary photodamage involves predominantly other organelles, such as the ER or the 

lysosomes, different pathways involving the activation of upstream pro-apoptotic BH3-only proteins is 

required for MMP and apoptotic photokilling. Photosensitizers that target Lysosomes may activate 

intrinsic apoptosis following the release of cathepsins from photo damaged lysosomes resulting in the 

cleavage of the BH3-only Bid and consequent MMP.[154] [155] 

Necrosis. Necrosis owing to ATP depletion is considered to be the result of severe oxidative cell damage 

triggered by the mitochondria permeability transition. Massive accumulation of ROS in the mitochondria 

can trigger the release of additional ROS from the mitochondria, which further increases the oxidative 

stress in the cell [156]. Low energy level PDT can induce apoptosis while high level PDT induce necrosis. 

Necrosis results from high levels of cell damage, in which plasma membrane integrity is lost, cells lyse, 

and tissue inflammation is triggered [157, 158] [159] [160]. In necrotic death upon DNA damage, Calpain 

proteases play a central role in sensing excessive calcium levels and in turn initiating the death response 

by activating several classes of effector proteases such as cathepsins. In addition, calpains contribute 

directly to cell destruction by degrading essential structural components of the cell. ( ROS surpresses 

Bcl-2 , suppression of Bcl-2 leads to increase of IP3R which leads to Calcium increase, which leads to 

necrosis) [161]. The chronological and molecular order of the events accompanying necrosis remains 

elusive. For example, the relationships among Ca2
+, ATP and ROS can be complex, presumably because 

of the existence of self-destructive feed-forward loops. Although taken alone each of these events is not 

specific to necrosis (and indeed some might be shared with apoptosis), it is the possible accumulation of 

these events in an organized, programmed cascade of self-destruction that might define cell death  

[162] . Bax activation or apoptosome formation (or both of those) in apoptosis signaling have been 
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considered to operate in a slow time scale. This time scale varies from cell to cell and from stimulus to 

stimulus. The tBid-Bcl-2-Bax interaction along with the Bcl-2 level determines the time course of Bax2 

activation and thus apoptotic activation through the mitochondrial pathway of apoptosis. Bax inhibition 

by Bcl-2 molecules reduces the effective rate for Bax conversion to activated Bax and subsequent Bax2 

complex formation. [163-165]. 

Cleaved PARP as marker of apoptotic death.  A very early step upon illumination is cytochrome c 

release from the mitochondria into the cytosol of treated cells. The cytochrome c release might be 

correlated to the loss of the mitochondrial membrane potential that has been observed in experiments, 

and might be related to MOMP (mitochondrial permeability transition pore). Ca2+ release through 

MOMP is correlated to cytochrome c loss, although PDT has been show to degrade critical hsitidines of 

the pore. PDT has a very subtle effect on mitochondrial membrane. Cells could die from ATP depletion 

(necrosis) or indeed follow the apoptosis activation of the caspase-pathway. Caspase 3 is the caspase 

that cleaves a large number of proteins that are involved in cell structure and maintenance, such as DFF 

(DNA Fragmentation Factor) and PARP (PolyADP-Ribose Polymerase). PARP has been used as the marker 

of the apoptotic extense.  PDT treatment with with Pc 4, BPD, or aluminum phthalocyanine (AlPc) has 

been shown to lead to cleavage of PARP in different cell lines[166-170]. It has been also demonstrated 

that the damage of plasma membranes was related to the intracellular ROS formation triggered by PDT. 

Among the several downstream signaling events following the generation of ROS in the vicinity of the 

plasma membranes, the activation of JNK and caspase 3, cleavage of PARP have been repeatedly 

reported . [171] [172] [100]. It is reported that cleaved PARP shows a jump increase at about 4-5 hours. 

PDT can induce necrosis at several levels. While mediators of necrosis such as calcium and reactive 

oxygen species (ROS) have been reported to contribute to apoptosis, recent studies have begun to 

demonstrate that the ability of such mediators to initiate necrotic cell death depends on active 
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participation by the dying cell. Mitochondria are a major source of ROS that can initiate necrosis. Excess 

mitochondrial ROS can damage DNA by causing cleavage of DNA strands, DNA–protein cross-linking, and 

oxidation of purines [173]. This may lead to DNA-damage response, including activation of p53 and 

PARP. While activation of p53 may cause apoptosis and cell cycle arrest, hyper activation of PARP leads 

to necrosis [174]  [175, 176] [177, 178].  

TNF following PDT treatment. In [179] macrophages have been shown to produce TNF and to become 

cytotoxic under the influence of porphyrin and light.   It is therefore likely that the photodynamic 

activation of macrophages may play a major role in the therapeutic effect[180] [179]. The initiators of 

apoptosis program are tumor necrosis factor-alpha (TNF-α) that binds to the TNF receptor; Lymphotoxin 

(also known as TNF-β) that also binds to the TNF receptor; Fas ligand (FasL), a molecule that binds to a 

cell-surface receptor named Fas. TNF is the initiating molecule of the extracellular trigger (external 

pathway) for the intracellular composition of Death Induced Signaling Complex ( DISC) (common to 

external and internal pathways). In [181] , an energy-dependent production of TNF by macrophage 

treated with PDT, stimulated or unstimulated with endotoxin, was demonstrated, and TNF production 

was inhibited at the highest treatment energy levels. These data represent the first description of 

cytokine production by PDT-treated macrophages, and may serve as another mechanism of PDT 

cytotoxicity in vivo, either directly by TNF-mediated tumor necrosis, or indirectly by vascular effects on 

tumor vessels. [181] [182] [183] [184] [185]. Macrophages were reported to release TNF-a following PDT 

treatment and to preferentially recognize PDT treated cancer cells as their targets. [184] presents 

Macrophage activation and TNFa  cytotoxicity and combinations of PDT with other treatments , such as 

immuno-stimulants including TNFa There is indeed evidence of synergy between immuno-modulators 

and PDT in the destruction of experimental tumors [181] [179, 185]. 
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Autophagy: Beclin 1 has a key role in the initiation of autophagy, a process of self-cannibalism in which 

cytoplasmic constituents are sequestered and targeted for lysosomal degradation. Autophagy is 

controlled in large part by beclin 1 (BECN1), a myosin-like, BCL-2-interacting protein. When not bound to 

BCL-2, BECN1 participates in a multiprotein complex that initiates the earliest stages of autophagosome 

assembly. In response to stress, both beclin 1 (BECN1) and BCL.2 are phosphorylated, causing the BCL-

2/BECN1 complex to dissociate.BECN1 is phosphorylated by death associated protein kinase (DAPK), and 

BCL.2 is phosphorylated by JUN  terminal kinase (JNK), a downstream target of the inositol-requiring 

protein 1 (IRE1; also known as ERN1) arm of the unfolded protein response [101] . Autophagy can 

suppress the stress signal by providing the cell with ATP and raw materials for new protein synthesis. 

Under low stress conditions, autophagy promotes cell survival; at moderate stress, it may lead to 

autophagic cell death; and under conditions of high cellular stress, calcium release may stimulate 

apoptosis by the intrinsic (mitochondrial) pathway [186] [101]. Massive oxidative stress leads to 

autophagy through different pathways and massive accumulation of ROS in the mitochondria can trigger 

the release of additional ROS from the mitochondria, which further increases the oxidative stress in the 

cell [157, 158] [159] [156]. Autophagy is stimulated by various cellular stresses including oxidative stress. 

Given the functional duality, activation of autophagy may either impede or facilitate PDT-mediated cell 

killing. Although it has been postulated based on experiments that autophagy is a mechanism to 

preserve cell viability following photodynamic injury (knock down of autophagy genes, lowers the 

threshold for apoptotic cell killing), tumor necrosis factor (TNF)-a has been shown to induce autophagic 

cell death through a ROS-dependent mechanism [186] [187, 188] [189]. 
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Figure 4.2.1. Morphological features of autophagic, apoptotic and necrotic cells. (a) Normal, (b) 

autophagic, (c) apoptotic (d) and necrotic cells. Whereas the morphologic features of apoptosis are well 

defined, the distinction between necrotic and autophagic death is less clear. The scale bar represents 1 

μm[190]. 
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Figure 4.2.2. Transmission electron micrographs of monolayer R3327-AT cells treated by in vitro PDT 

[191]. (a) Non-treated cell with normal appearing mitochondria, and (b) PDT-treated cell with matrix 

swelling of mitochondria.  
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 A schematic representation of the known molecular pathways and biochemical events induced 

by PDT treatment leading to cell death is given in figure 4.3.1. A molecular interaction graph with 

information about the potential dynamic behavior of a cellular system that can be translated into 

reasonable mathematical terms that are suitable for computer simulation.  Blue color: Reactions that 

lead to the activation of the photosensitizer(Photofrin in our case) and the generation of reactive oxygen 

species (ROS). The kinetic mathematical model of [102] is used to describe the molecular pathways. Red 

color: Exposition to tumor necrosis factor (TNF) or TNF-related apoptosis-inducing ligand (TRAIL) as a 

result PDT treatment activate effector caspases that dismantle the cell. The kinetic mathematical model 

of [100] is used to describe the molecular dynamics. Light blue: The interplay between autophagy and 

apoptosis in response to oxidative stress. A signaling mathematical model introduced in [101] is used to 

describe the dynamics. Yellow color: Components and interactions that have either been  observed or 

conjectured in the literature but no equation has been identified(thin lines) or they have been observed 

and we have a mathematical equation to describe them ( thick lines) .  An arrow signifies the upregulation 

process of a cellular molecular component as a signaling response to another molecular component, and  

and a line with a vertical line segment signifies the downregulation process of a cellular molecular 

component as a signaling response to another molecular component. A coherent PDT mathematical 

model has been synthesized from the three kinetic models, with the necessary modifications to account 

for biochemical events, such as the initiation of the degradation process of Bcl-2 by ROS, that could bind 

to Bax to prevent its activation   [192]. All rate equations, initial molecular concentrations, coefficients 

and constants can be found in the supplementary information tables.  
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Figure 4.3.1. A schematic representation of the known molecular pathways and biochemical events 

induced by PDT treatment leading to cell death 
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4.4 Mathematical Modeling Scheme 

Following[100], biochemical reaction equations were derived from the following scheme, for the 

apoptosis/necrosis pathways. For a given binary reaction i the biochemical equation is represented by 

one of following general mass-action paradigms: 
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For the autophagy pathway, we follow [101] and the neural network modeling method as it is described 

in  [101] and has been used in[193-195]. We use an intermediate modeling strategy that employs 

nonlinear ODE to describe protein regulatory networks but is not tied to specific reaction mechanisms 

and rate constants. More precisely, we use ODEs of the form:  

                                                          ])([ iii

i XWF
dt

dX
                                                                     (4.4.2) 

                                                                      



N

j

jijii XW
1

0                                                                  (4.4.3) 

where iX is the expression level of a molecular concentration 10  iX and 
Wi

e
WF







1

1
)(  is a 

sigmoidal function that varies from 0 (when


1
W ) to 1 (when



1
W ).  The parameter   

controls the steepness of the sigmoidal function at its inflection point. iW  is the net effect on molecule 
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i  of all molecules in the network. The coefficient ij  is less than 0 if molecule j  inhibits the 

expression of molecule i , more than 0 if molecule j activates molecule i , or equal to 0 if there is no 

effect of molecule j on molecule i . This equation has the great advantage that it is subject to all the 

powerful analytical and simulation tools of nonlinear ODEs, yet, in the limit of large , it behaves like a 

discrete Boolean network[196].  When 1 , iX  tends to flip (on a timescale ≈
1 ) between 0 and 

1, and the dynamical system approximates a Boolean network[196].  

 

4.5 Background of the logical design for cell decision making 

Cells, as physical systems, possess the ability to gather, store and utilize information. This 

information may pertain either to state of the system’s immediate environment or to the inherent 

nature of the system itself, as in the case of genetic information. To collect and process information is a 

feature of living systems; therefore we consider cells as info systems [87].  Cells as biochemical info 

systems have features that are either fully stochastic, or part stochastic and part-deterministic. Their 

stochastic nature can be attributed to randomness in one or more of the following components: system 

structure (geometry); system dynamics (biochemical reactions, constants and concentrations); forcing 

functions; and initial, boundary and environmental conditions [87]. A stochastic description of these 

cellular systems is needed, and mathematical modeling of decision mechanisms concerning their states 

(apoptosis, senescence, etc.) will be made with less than adequate information. Communication theory 

enables development of such an explicit and quantitative description that accounts for uncertainty in 

the presence of limited data. Our aim will be to understand the reliability of a molecular cell death 

stimulus controlling the survival of a cell. A decision strategy will be parameterized by input/output 

kernel probability distributions of the form stimulus/decision, instead of a deterministic function that 
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represents a “noiseless system”. The input kernels are determined by the biophysics of this mechanism. 

The mutual information describes the reliability between input/output. Although the input can be a 

continuous quantity, such as a molecular concentration, the noise present in the regulatory elements 

corrupts the computation and does not allow the arbitrary resolution of a real-valued input to 

propagate to the output; instead, the mutual information tells us how precisely different inputs are 

distinguishable to the organism [87] [95]. 

While existing techniques used by other authors have been tailored to describe and understand 

binary decision-making based on a single stimulus, our framework extends to handle multiple stimuli by 

replacing the random variable X with a random vector ),,( 321 XXXX   and modifying the 

mathematics accordingly. Moreover, rate distortion theory can be recast to consider more complex 

cellular processes as we will discuss later. For a probability mass function ),,( 321 xxxpX  of a random 

variable ),,( 321 XXXX  the amount of information of an event ),,( 321 xxx is the amount of 

information one receives upon being told that the random variable has assumed this value and it is 

defined by the equation: 

                                                                   ),,(log),,( 3212321 xxxpxxxi X                                        (4..5.1) 

For the case of two random variables, a vector X  and a scalar Y  , with probabilities Xp  and qpY  , 

and joint distribution XYp the “conditional distribution” and “conditional information”(this is the 

measure of the information one receives upon being told that the event yY   has occurred if one 

already knows the occurrence of the event ),,( 321 xxxX  ) are defined by the functions  

),,( 321
xxxyQ

XY  and ),,( 321 xxxyi where  
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                                                       3212321
,,log),,( xxxyQxxxyi

XY
                                               (4.5.2)   

The “mutual information” is defined by the following relation (this is the difference between the amount 

of information that the event yY 
 has occurred conveys to someone ignorant of what value X  has 

assumed, and that which it conveys to someone who already knows that the event ),,( 321 xxxX 

has occurred[95]):       
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(4.5.3)  

The average mutual information represents the mean amount of information that knowledge of the 

value assumed X  supplies about the value assumed by Y  and is defined as: 
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An alternative equivalent definition follows from entropy considerations.  The mutual information can 

be understood as a measure for prior uncertainty the receiver has about the sender's signal )(YH , 

diminished by the uncertainty that is left after receiving information about the sender's signal )( XYH  

. Of course the decrease in uncertainty is due to the communicated amount of information, which is  

),( XYI : [87, 95] 

                )(log),,(),,()(log)()(
,,,

321321

321

yqxxxyQxxxpyqyqYH
yxxx

XYX

y

 

           

(4.5.5) 

            ),,(log),,(),,()( 321
,,,

321321

321

xxxyQxxxyQxxxpXYH
XY

yxxx
XYX  

                        

(4.5.6)  



 
 

89 
 

)(

),,(
log),,(),,()()(),(

321

,,,,

321321

321
yq

xxxyQ
xxxyQxxxpXYHYHXYI

XY

yxxx
XYX        (4.5.7)  

where we have used the fact that                                                                
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X                                                         (4.5.8)                                                                      

In lossy data compression, the decompressed data may be different from the original data. Typically, 

there is some distortion between the original and reproduced signal [95]. A distortion measure d  is a 

mathematical entity which specifies exactly how close the approximation is. Generally, it is a function 

which assigns to any event ),(),( yxYX  (often called letters) in the product sample space YX   

(often called the “alphabet”) a non-negative number denoted ),( yxd . The distortion function defines 

accurate sensing, penalizing mistakes and quantifying the disadvantages of alternative decisions [87]. 

With each conditional probability assignment (“strategy”) ),,( 321 xxxyQ
XY

and for the associated joint 

distribution given by  321321 ,,)(),,,( xxxyQypxxxyp
XYYYX   , the “expected” distortion depends 

on the conditional probability (This is the “average” distortion associated with this conditional 

probability) [95]:   

                                 
yxxx

XYXXY
yxxxdxxxyQxxxpQd

,,,

321321321

321

),,(,,),,(                          (4.5.9) 

  A conditional probability assignment is said to be D admissible if and only if 

                                                                             DQd
XY
                                                                            (4.5.10)     

 The set of all D admissible assignments (set of all D  admissible strategies) is denoted DQ . Each 

conditional probability gives rise not only to an average distortion, but also to an average mutual 
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information  
XY

QIYXI );( . The minimum mutual information over all D admissible “strategies” 

(conditional probabilities) is given by the rate distortion function:  

                                                             

  

)(min)( /)/(/ XYQyxp pIDR
DXY 

    

                                           (4.5.11)                           

The meaning of the rate distortion function is the following[95]: suppose we are interested in whether 

or not it is possible to reproduce the source (death stimuli) at the channel output (cell decision) with 

fidelity D . An average of at least )(DR  bits per letter (letter here is a concentration level) of 

information from the total of H  bits per letter produced by the source must reach the output in order 

for this to be possible. That is, at most  )(DRH   bits may be lost. We may express the variation 

problem defining  )(DR   as follows:  First, a stimulus probability Xp is given and a distortion function 

is assigned d .  A maximum permissible value of average distortion is set as D , and the problem is to 

minimize the average mutual information )(
XY

QI  subject to the constraints   
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(4.5.12) 
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                                                             
yx

XYX DyxdxyQxxxp
,

321 ),()(),,(                                       (4.5.14)  

The problem is solved with the methods of the Lagrange multipliers[95] by forming an augmented 

functional ( in the following equations, ),,( 321 xxx is denoted by the vector x ) : 
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Where the parameters sX ,   are Lagrange multipliers.  The solution is known to be:  
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For a given s, we can derive q  from implicit equations of the form:  
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We can generate a point on )(DR  parametrically in terms of q and s  :   
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4.6 Logical design and general discrete form of the Blahut Arimoto algorithm  

The search for extremizing probability distributions is a problem in the calculus of variations with 

constraints.  The Blahut–Arimoto algorithm, is an iterative technique (that works with probability 

density estimates) for numerically solving the minimization of the mutual information functional and 

obtaining the probabilities of arbitrary finite input/output alphabet sources. The main idea consists of a 

mapping from the set of channel input probability vectors into itself such that the sequence of 
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probability vectors, generated by successive applications of the mapping, converges to the vector that 

minimizes the mutual information[197]. The basic steps are as follows[87]: 

1. Initialize the probability distribution of the decision Y , namely q .   

2. Given q  compute the conditional probability distribution 
XY

Q that minimizes the mutual 

 information ),( YXI while satisfying the distortion constraint                 

                                                   










y

yxds

yxds

XY
eyq

eyq
xyQ

),(

),(

)(

)(
)(                                                               (4.6.1)  

3. Given 
XY

Q compute the probability distribution q that minimizes the mutual information    

),( YXI  

4. Repeat steps 2 and 3 until 
XY

Q  and q converge.  

As these steps are carried out, the mutual information has been shown to be )(DR , where D is 

determined by the lagrange multiplier chosen in the minimization. Repeating this process with different 

values of the Lagrange multiplier, generates a collection of optimal strategies 
XY

Q and probabilities q .  

In particular and with respect to the photodynamic stimulation, the formulation goes as follows (Fig. 

4.6.2):  

a. First, solve the ODE group in time domain and obtain the normalized concentrations of three 

marker molecules, indicators of apoptosis, necrosis and autophagy, at a time t.  
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For our simulations, PDT treatment starts at 0t (s) and  treatment ends at dtt  (this can be 10 to 30 

minutes and determines the fluence or optical dose for a given photon density) and observation ends at 

5.7max  tt  hours.  

b. Define the stimulus probability distribution ),,()( 321 xxxpxp XX    (probability of the 

molecular concentrations occupying specific coordinates in the concentarion space at time t).  

Define the smooth and compactly supported  “bump function” approximation to the delta 

function [198], in the “phase space” of the normalized concentrations which is: 
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(4.6.3)                                 

               and can be interpreted as the Gaussian function  scaled to fit into the unit disc.  

c. Rescale the bump function, and subtract ))(),(),(()( 321 txtxtxtX  from the vector 

),,( 321 xxxX   to shift the center of this delta function to the point )(tX  since most of the 

probability is condensed at this point.  This defines the probability distribution vector  given by :                      

                    







 
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
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xxxpX

         

                   (4.6.3) 

and the domain of nonzero values is now  3

2

2

2

2

1 xxx . We notice that this is a molifier of 

the Dirac delta function (  converges to  in the sense of measures ,   1L ), and for   

values of  small enough, the radius of the compact support is shorter than the stepz size of    

the spatial grid of the simulations(Fig. 4.6.1).  Since we are interested in the probability of the 
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event, which    is the integral of the distribution, we may replace it by a delta function centered 

at )(tX .              

d. Initialize the probability distribution q of the cell decision with binary values of cell fate y  :
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 (4.6.4) 

e. Define the distortion measure vector ),,,( 321 yxxxd . The decompressed data need not be 

exactly the same as the original data[199]. The most common distortion measures the Hamming 

distortion measures of the form: 
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Where the first inequality hold for at least one ix  and 21,dd  are real positive numbers. The 

distortion function describes the goals of a decision-making pathway by quantifying how 

disadvantageous, or ‘‘distorted,’’ a decision y  is in response to a stimulus  ),,( 321 xxxx  . In our 

case, suppose that when all molecular concentration are below a threshold th

ix , the cell should not 

die ( survivaly  ) ; for at least one concentration greater than its fixed threshold th

ix  , the cell 

should die )( deathy  . In practice, the thresholds may not be clear and a cell can be forgiven for 

make either decsion in response to a stimulus close to the threshold. To represent this situation, a 

graded distortion function needs to be used [87], so that stimuli demonstrably above or below a 

threshold th

ix elicit a nearly determinsitc opyimal response ( probability of cell death is close to zero 

or one, and for stimuli around the thershold, the optimal response is such that survival/death 

decisions are both expected to occur, with significant probability.  Stimulus levels near a threshold 

should lead to bimodal probability distributions with survival and death observed in a cell 
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population, as it has been seen experimentally in several cell fate decision processes in [87], [200, 

201]. In other words, the distortion measure  is the penalty for an incorrect classification of the level 

of a molecular concentration, which leads to errors in the stimulus pattern recognition, which in this 

frame  is the assignment of a cell fate probability to the  given input by the biomolecular reactions. 

f. Assign the Lagrange multiplier constant s . We choose a negative number  for the slope (the  s

increases from     to 0 and  D  increases from 0 to maxD , therefore the least distortion 

correspond to very large negative s . 

g. Calculate the strategy 
XY

Q as defined by 










y

yxxxds

Y

yxxxds

Y

XY
eyp

eyp
xxxyQ

),,,(

),,,(

321
321

321

)(

)(
),,;( that 

minimizes the mutual information between the input (death stimuli, normalized concentrations) 

and the output (cell decision). This strategy will be calculated following the Blahut-Arimoto 

algorithm [197].  This can be done in following steps: 

I. Assign   that determines the accuracy of the algorithm. Define  321 ,, xxxx   

II. Initialize with the exponential  

                                                 yxxxds
eyxxxA

,,,

321
321),,,(


                                         (4.6.6)     

then calculate in the following order: 

α. The denominator 
y

yxxxAyqxxxa ),,,()(),,( 21321 .                                        (4.6.7) 

β. Calculate 



321 ,, 321

321321

),,(

),,,(),,(
)(

xxx

X

xxxa

yxxxAxxxp
yc .                                             (4.6.8) 

γ. Update )()()( ycyqyq  for binary y . 

δ. Calculate the upper bound and the lower bound: 

 
y

U ycyqT ))((log)( 2  ,          ))((logmax 221 ycT jL 
                           (4.6.9)
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If  LU TT  go back to step α.  Otherwise go to step ε.  

ε. Update 
y

yxxxAyqxxxa ),,,()(),,( 321321 .                  

στ. Calculate the “strategy”  
),,(

)(),,,(
),,(

321

321
321

xxxa

yqyxxxA
xxxyQ

XY




                   

 (4.6.10)  

  

 

ζ. Calculate the survival probability  
x

XYX xxxyQxxxpyq ),,(),,()( 321/321  (4.6.11)  

 

 

η. Calculate the expected distortion 

)),,,(),,((),,( 21321321  
x y

XYX yxxxdxxxyQxxxpD                              (4.6.12)                 

θ. Calculate the rate distortion function approximation  for  this strategy  

                                   



x

LU
X

TT
xxxaxxxpDsDR

2
),,(log),,()( 3212321                      (4.6.13)  

The method of the Lagrange multipliers in this code is not only a mathematical formalism. Finding 

extrema of a function is  a most common problem, but difficulties often arise when one wishes to 

maximize or minimize a function subject to fixed outside conditions or constraints. The method of 

Lagrange multipliers is a powerful tool for solving this class of problems without the need to explicitly 

solve the conditions and use them to eliminate extra variables. In cases where the function and the 

constraint have specific meaning, the Lagrange multiplier has an identified significance as well. For 

example in mechanics and in the definition of the Lagrange function, the multipliers describes the force 

of the constraint  

                                              ),(],,[],,,[ txgtxxLtxxL iiiii                                                 (4.6.14) 

                                                         gVF potential                                                              (4.6.15) 
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 In economics, in the study of shadow prices, co-state values, the multipliers is the most the firm would 

pay for another unit of capital.  In information theory and specifically the minimization of the functional 

of the multual information, the Lagrange multiplier s represents the rate of change of the rate distortion 

function  [95]: 

                                                                                 sDR s  )(                                                                      (4.6.16)  

4.7 Simulation and visualization  

A group of rate equations are used to quantitate the time evolution of the following molecule species 

in a Type II PDT process: photosensitizers (Photofrin) in ground state S0, single and triple excited states S1 

and T; oxygen molecules in triplet grounded and single excited states 3O2 and  1O2; Death ligand such as 

TRAIL and TNF; inactive receptor complex R*;FLICE-like inhibitory protein flip; procaspase-8 and 

procaspase-10,inactive,both as C8, bi-functional apoptosis regulator Bar; (cleaved) active caspase-8 and 

caspase-10  C8* ;   procaspase-3 and procaspase-7 ,inactive, both as C3 ;  procaspase-6,inactive capsase-6 

C6; (cleaved) active caspase-3 and caspase-7 C3*and active caspase-6  C6*; X linked inhibitor of 

Apoptosis in the cell XIAP; Poly (ADP-ribose) polymerase PARP, as DNA damage repair enzyme , here all 

substrate of  active caspase-3 C3*;The BH3 interacting-domain death  agonist Bid as a substrate of  

cleaved caspase-8 in its inactive form; the anti-apoptotic  protein Bcl-2; the Bcl-2–associated X protein in 

its inactive form Bax and its active form Bax* ; Bax in the mitochondrial compartment as Baxm; 

cytochrome c inside the mitochondria in the mitochondrial compartment CyCm and cytochrome c release 

from the mitochondria but remaining in mitochondrial compartment CyCr; cytochrome c in cellular 

compartment CyC ; second mitochondria-derived activator of caspases. Smac and Smac/Diablo  released 

from the mitochondria  but remaining in mitochondrial compartment, Smacr ; Apoptosis activating 

factor Apaf-1, substrate of CyC, in its inactive form Apaf1; active form of Apaf-1, Apaf*; inactive form of 

procaspase- 9  C9; the apoptosome  Apop which is the complex Apaf*:C9; inositol-requiring protein 1 
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IRE1; JUN N-terminal kinase, JNK; death associated protein kinase DAPK; Beclin mediator of autophagy 

phosphorylated by death associated protein kinase DAPK,  BECN1;the tumor suppressor protein p53; the 

intracellular concentration of  calcium Ca2+; the protease Cathepsin Cath and the protease Calpain; the 

inositol 1,4,5-trisphosphate receptor IP3R or IPR3; Even though the singlet excited oxygen molecules 1O2 

may play a critical role by themselves, it is well known that other ROS species are also involved in the 

cytotoxicity of PDT with mitochondria as the possible source and target sites. The  1O2 should be 

interpreted as the representatives of ROS [35] . The molecular equations, together with the definitions 

of coefficients and their values that were used to mathematically model the molecular network 

described above have been detailed in [102], [100], [101]. A 70 rate equation group can be solved to 

characterize the main molecular interaction involved in Type-II PDT. We use the ordinary differential 

equation (ODE) stiff solver (ode15s) by MATLAB (The MathWorks, Natick, MA) to obtain the solution 

vector as a function of illumination time t from the start of illumination at t = 0 to 1800 (s). Experimental 

verification of these quantities that describe the levels of all these molecular concentrations can be very 

difficult if not impossible and they relate indirectly to the ultimate consequence of PDT for cell killing. In 

[102] we introduced a cell killing model that related the molecular concentrations of the singlet oxygen 

and the unoxidized receptors  to the cell survival ratio, which can be measured with an in vitro cell 

model. The output of this equation group is the time dependent levels of molecular concentrations for 

the stimulus vector of  ( )  (  ( )   ( )   ( )) corresponding to singlet oxygen 1O2, cPARP and 

Caspase 3. The concentrations were normalized with respect to their maximum values and their range is 

[0, 1]. The total time for the simulations was up to 30,000 sec to monitor post- treatment cell killing. We 

used the stiff solver (ode15s) by MATLAB (The Math Works, Natick, MA) to obtain the solution vector as a 

function of illumination and observation times, from the start of illumination at t = 0 to 1800 (s) (end of 

illumination time) and from 1800 to 30,000 (s). Experimental verification of these quantities that describe 

the levels of all these molecular concentrations can be very difficult if not impossible and they relate 
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indirectly to the ultimate consequence of PDT for cell killing. In [102] we introduced a cell killing model 

that related the molecular concentrations of the singlet oxygen and the unoxidized receptors  to the cell 

survival ratio, which can be measured with an in vitro cell model. The same software (MATLAB) is used 

for producing the simulations for the decision mechanism of a single cell model design. The output of the 

time dependent Blahut Arimoto algorithm is the cell survival probability. The distortion measure d that 

quantifies how disadvantageous a decision y is, in response to the stimulus vector   (        ) is 

defined by the equation  ((        |          ))      if      
   for some i, and 

 ((        |       ))    
   if      

   for some i, and a small number otherwise. The thresholds 

  
   for the normalized concentrations were all set to 0.5.  This distortion measure penalizes a cell survival 

error more than cell death error for given stimuli, by one order of magnitude. For the range of the 

Lagrange multipliers the equation        was used and in the simulations n varied over a finite set of 

integers (a sample of n values from 1 to 20 was taken for the simulations below). The initial survival 

probability   (      )       was set equal to 0.9. The treatment parameters for the PDT model 

that was introduced in our previous work [102], was linked to the input of this algorithm ( Fig.1:“PDT 

Biomolecular equations”). Tables containing the molecular components involved in the PDT model, 

molecular interaction network, interaction constants and initial conditions of all concentrations are 

available at the supplementary information section.  
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Figure 4.7.1. PARP activation is an immediate cellular response to metabolic, chemical, or radiation-

induced DNA SSB damage. Upon DNA cleavage by enzymes involved in cell death (such as caspases), 

PARP can deplete the ATP of a cell in an attempt to repair the damaged DNA. ATP depletion in a cell 

leads to lysis and cell death. PARP also has the ability to directly induce apoptosis, via the production of 

PAR, which stimulates mitochondria to release AIF. This mechanism appears to be caspase-independent. 
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Figure 4.7.2. Singlet Oxygen is the most important cytotoxic agent generated during PDT(it decays 

after photo irradiation time). Singlet oxygen is produced during PDT via a triplet-triplet annihilation 

reaction between ground state molecular oxygen (which is in a triplet state) and the excited triplet state 

of the photosensitizer. 
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Figure 4.7.3. ROS initiates the degradation process of Bcl-2 that could bind to Bax to prevent its 

activation. At a later  time after the photo-irradiation a post-treatment increase of Bax is observed. 
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Figure 4.7.4. Actived Caspase 3 is  potent effector of post-treatment cell apoptosis: For the intrinsic 

cell death pathway, apoptosis is triggered by intracellular events such as DNA damage and oxidative 

stress. For the extrinsic cell death pathway, apoptosis is  triggered by extracellular stimuli such as TNF 

and TRAIL. A sharp increase in the levels of Caspase 3 indicates the beginning of apoptosis.  
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Figure 4.7.5. A sample of a survival probability curves as predicted by the Blahut Arimoto algorithm for 

the cell model. Value of the parameter 
432 10,10,10  s   Photon density 

3610  cm . Photo 

sensitizer (Photofrin) concentration in a cell 313

0 105][  cmS . Single cell oxygen concentration 

317

2

3 1006.6][  cmO .  

 

4.8 Results and discussion 

  

The effort to link biochemical pathways and collective interactions to the behavior of whole cells 

and to infer causality from statistical correlation in large data sets is not a simple task in the case of 

photo-chemotherapy, and to account for all biological variation is a very challenging goal. The existence 

of more than one PDT tissue destruction mechanism in vivo for the treatment of intraocular 

retinoblastoma like tumor, has been suggested and demonstrated in  [202] where an early direct cell 

damage was followed by a subsequent late damage occurring in the tumor tissue left in situ after 

treatment, resulting in a biphasic pattern in the cell survival curve as a function of time. In[203], 

experiments on Chinese hamster cells with phthalocyanine dyes and split light fluence indicated that 

cells can repair sublethal photo cytotoxic damage during the course of several hours. Although direct 
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cytotoxicity to the tumor cells has been shown to be relatively small after PDT and to increase with time 

after treatment[204], examples of in vitro mammalian cell curves as functions of exposure time for 

different photosensitizer concentrations show that for an acute high dose treatment (vast majority of 

PDT treatments) the cell survival ratio decreases to less than 1% in the course of a few minutes. In [205], 

the effects of low dose gamma irradiation on promyelocytic leukemia Hl 60 cells were investigated  and 

it was recorded that after radiation exposure, the survival cells continue to divide so both the numbers 

of control (untreated) and treated cells with all-trans-retinoic acid can increase with increasing time.   

Discrepancies may be due to many factors such as light attenuation passing through the skin 

resulting in a relatively lower energy dose to some cells than others or the fact that the tumor 

vasculature is a primary target of PDT, indicating that endothelial cells are the clinically relevant cell 

population that might have a significant effect on the cell survival curves. Therefore, the local micro-

environment might have significant impact on PDT response. If the photosensitizer is present in the 

endothelial cells lining the blood cells, then these cells can be killed resulting in vascular occlusion, 

cessation of blood flow, thrombus formation and oxygen/nutrient deprivation leading to tissue 

destruction[206]. Vascular effects can be secondary to cell death or conversely, cell death can be 

secondary to vascular shutdown. Another factor that might affect the final outcome is the triggering of 

the immune responses, local or systemic[206]. A conceptual and mechanistic system biology 

mathematical model can yield valuable insights since cellular behavior cannot be summarized in 

population averages[207]. The Blahut Arimoto model has several features that are consistent with the 

experimental results. For the parameter s, estimation can be performed using experimental data, and a 

range of values can be recovered. The shapes of the survival curves and the extents of their correlation 

with the parameter s will depend on the structure of the rate equations the type of cell decision 

algorithm adopted and the accuracy of the experimental data. Different values of the parameters will be 

predictive of different model curve topologies[208]. The cell s parameter distribution in a cell population 
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for this biochemical models is remains non-identifiable, high-likelihood predictions can still be made by 

appropriate calibration of the parameters. 

Cells have special machinery that rapidly recognizes damage and repairs it, therefore allowing the 

cell to retain its structure. [209], [210] [211] . The cell repair mechanisms that are related to the 

development of drug resistance in cancer cells are complex and of various kinds and are associated with 

many factors, such as cell type and intracellular and extracellular environment. For example, superoxide 

dismutase, which is present in both the mitochondria and cytoplasm of eukaryotic cells, is an enzyme 

that restrains the toxicity of reactive oxygen species such as 1O2, one of the PDT agents. Cell killing 

through PDT is a unique case study of system biology in which cell repair and death in response to 

combined stimulations of photosensitizer and light can be quantitatively investigated and modeled[102].  

The survival probability predicted by the rate distortion function and calculated by the Blahut 

Arimoto algorithm , and the variability in the graphs resulting from different values of the parameters 

provide a framework for the interpretation of self-renewal capabilities of the cell and its  ability to 

generate drug resistance [212]. There is significant difference between the survival probabilities as 

function of time and an example is shown in the figures below. It is documented by several experimental 

studies that tumor cell killing and tumor destruction are not always evident during PDT treatment, but 

due to the involvement of host related factors, the effect of  PDT cell killing might become evident post- 

treatment and over a longer period of time [77] . 

4.9 Conclusions  

In this study a model of a cell decision mechanism is proposed, which captures certain observed 

characteristics of a cell behavior during photo-irradiation and pharmacological treatment (Type II PDT) 

using rate distortion theory to quantify the goals of a binary decision process (cell survival - cell death). 

The main components of the model are, the time dependent distribution of molecular stimuli, the 
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distortion function (or measure), the conditional probability of the cell decision strategy, the cell survival 

probability, the expected distortion and the rate distortion function which quantifies a limit on how well 

the goals can be achieved given the stimulation. The results are independent of the biological 

mechanism by which the cell strategy is implemented and the Blahut Arimoto algorithm is used to 

derive optimal pathways. The model requires knowing the probability distribution of the stimuli as its 

input. For a variety of Lagrange multipliers, there is a corresponding variety of optimal pathways, but an 

approximation of the distortion function around which the pathway is optimized, is possible, based on 

algebraic properties of the algorithm (the distortion constraint) and numerical and experimental 

data[87]. According to [88] cellular decision-making has the following main features: a cell must (1) 

estimate the state of its environment by sensing stimuli; (2) make a decision informed by the 

consequences of the alternatives; and (3) perform these functions in a way that maximizes the fitness of 

the population. These characteristics are described in a single process using rate distortion theory.  The 

rate distortion framework enables design and evaluation of that process with a fundamental optimality 

criterion [87]. A diverse range of cellular responses to treatment and biological variation is the result of 

little information and distortion is associated with the decision mechanism of the cell, a decision 

mechanism that allows for intrinsic molecular noise, cell structure, possible PDT bystander effects, 

treatment parameter variations and other properties of a single cell and this therapeutic modality.  

 

Intracellular molecular interactions can be studied with the purpose of extracting useful conclusions, 

by using computational methods. In this chapter we present the development of a systems biology model 

that includes detailed molecular pathways induced by PDT treatment leading to cell death, coupled to a 

cell decision making algorithm that is based on the mutual information between cell death stimulation 

and cell response as the output of a bio molecular communication channel. This line of research can be 

relevant to future improvement and management of cancer treatment methodologies. The cell survival 
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probability is modeled as the output of an optimization process of transmitting the death signal through a 

communication channel with a possible environmental and/or inherent distortion. Modeling results can 

be compared directly to experimental results that are based on the levels of measurable molecular 

concentrations and cell survival ratios, for optimization of the unknown parameters, or/and used for 

design of different in vitro studies of PDT. This modeling establishes a framework to address questions 

such as why do cell types, despite sharing the same genome, in general represent stable entities and do 

not gradually "drift away” and “morph” into one another, but instead, get “stuck” in precisely those 

expression profiles that represent the observable cell fates and what is the molecular basis of the rules 

that govern such cell fate dynamics [213]. 

As a final consideration we need to note that while the predictions of the calculations of a system of 

70 molecular rate equations coupled to the a time dependent Blahut-Arimoto algorithm for cell decision 

making are necessarily limited by uncertainties in the choice of the various model parameters as well as 

by the simplifying assumptions of the model itself, they nevertheless provide an approximate theoretical 

framework within which the interaction between the PDT parameters and the biomolecular 

concentrations are linked to the quantized cell fate states through the mechanism of mutual 

information.  

 

Figure 4.6.1. The dynamic evolution of the  stimulus probability vector in the concentration space. 
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Figure 4.6.2.  The time dependent Blahut Arimoto Algorithm  
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4.10 Interaction information and the Bystander Effect 

 In the previous sections it was presented a communication theory model for the study of 

inactivation of cells by direct damage (necrosis/apoptosis).  In addition to this, photosensitized induction 

of apoptosis has been observed as a result of communication between cells in a colony[214], a 

phenomenon called “bystander effect”. In recent studies, comparisons between theoretical 

considerations(use of binomial distributions for prediction of independent inactivation of cells in 

microcolonies) and experimental data[214] have been incompatible, indicating that a bystander effect is 

involved in cell death in these colonies. Although it has been proposed that intercellular signaling takes 

place through molecules that are produced during the apoptotic process (such as interleukin 1β), the 

observation that unirradiated cells exhibit irradiated effects as a result of signals received from nearby 

irradiated cells, has not been fully understood. Further results suggest that a bystander effect is involved 

in ultraviolet-radiation-induced genomic instability and that it may be mediated in part by gap junctional 

intercellular communication[215].  Bystander effects contradict the generally accepted assumption that 

biological damage caused by ionizing and nonionizing radiation is limited to the cell in which the primary 

energy deposition takes place, but rather suggest that cells should be inactivated randomly with regard 

to position and experiments have shown that the cells are not inactivated independently of each 

other[216]. Going beyond the framework of PDT, it is believed that Radiation induced Bystander effect  

and it is now a well-established consequence of exposure of living cells to radiation [217-219]. 

Cell to cell communications in normal and carcinogenic cells have been discussed 

extensively[220, 221]. It is believed that in general cell to cell regulatory signals are conducted by 

chemical and electrical signals [219] where the chemical signals are transmitted via Gap Junctional 

Intercellular Communication ( GJIC) or by Distant Signaling Intercellular Communication (DSIC). The 

assumption is that these signals are propagated by a Brownian diffusive motion, because this yields 
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satisfactory results in simulations of bystander effects [222]. However, a quantitative biophysical model 

of the radiation-induced bystander effect needs to account for processing of information by the cellular 

environment through biochemical siganling, in order to determine more accurately how and when the 

bystander signals switch a cell into a state of cell death. 

The “interaction information” [223] is a generalizations of the mutual information, and 

expresses the amount information (redundancy or synergy) bound up in a set of variables, beyond that 

which is present in any subset of those variables:  

                                                            ),(),(),,( YXIZYXIZYXQ   

Q  measures associations between variables, and not the direction of the transmission: This means 

that nothing is gained formally by distinguishing transmitters from receivers, therefore it goes beyond 

the Shannon framework of linear transmissions[224]. An interaction is a regularity, a pattern, a 

dependence present only in the whole set of events, but not in any subset. It is symmetric and 

undirected, so directionality no longer needs to be explained by, e.g. causality[225]. Positive interaction 

implies synergy. Q measures the amount of influence on the relationship between X and Y , resulting 

from the introduction of Z[225]. It is the amount of information that is common to all variables but not 

present in any subset. Positive interaction information of three variables has been associated with the 

non-separability of a system in quantum physics[226], with the origin of synergy in relationships 

between neurons [227], with cooperative game theory with applications in economics and law [228]. To 

understand the bystander synergistic effect in the case of radiation, we observe that a low dose 

irradiation )(X  to a cell )(Y  is more unlikely to correlate to a nearby unirradiated cell )(Z  exhibiting 

irradiated effects. But if a low dose irradiation induces cell death to an irradiated cell, it would provide 

much more information about the possibility of a nearby unirradiated cell exhibiting irradiated effects, 

than if a high dose radiation would induce cell death to the irradiated cell. The corresponding reduction 
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in the possibility of a bystander effect is the sum of all three interactions connected to it, on the basis of 

state of the irradiated cell, the radiation dose, and on the basis of cell state and radiation dose 

simultaneously.  Suicide gene therapy[229] and gene transfer technology use the bystander effect ability 

of the transfected cells to transfer death signals to neighboring tumor cells [230]. Specific applications 

also extend in the practice of hematopoietic stem cell transplantation. It is expected that the interaction 

information can be used to provide quantifying tools, for the mathematical modeling of these clinical 

applications. The establishment of such a foundation, based on the mathematical properties of 

interaction information is currently under investigation.  



 
 

 
 

 
 

CHAPTER 5: ANALYTICAL CONSIDERATIONS AND CONCLUSIONS OF THE 
STUDY ON THE PROBABILITY OF SURVIVAL AND MODELING OF CELL 

KILLING BY PDT 
 

5.1 Predator Prey Models 

Survival functions can be derived using predator-prey model.  The predator-prey model has been 

used for the description of the survival probability in dynamic energy budget models [231] under the 

assumption that that the per capita death rate has two contributions, a constant loss b due to random 

misfortunes, and a density-dependent loss due to predation, with a Holling Type II functional form [231].  
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p  is the survival probability , v  is a constant that measures the deviation of the functional response 

from linear, x  is the length dimension of a prey and r is the predation rate, H  is the prey size for 

which the predation rate is half-maximum. This model was designed to predict the growth and 

reproduction patterns of a species based on the characteristics of individual organisms, particularly the 

strategy used to allocate resources. The size of an individual is given by the length x , surface area S , 

and volumeV  and the maintenance and assimilation rates are assumed to be related to these 

measures of size. This model takes an individual-based approach where all members of the prey 

population are “copies” of this one individual, and each “copy”, could be the “model individual” itself
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The use of a predator-prey model (a continuous model used for the simulation of discrete population 

dynamics) for the modeling of survival probability(a continuous variable) suggests the quantization of 

survival probability. Indeed, the quantization of probability has been proposed by other authors 

[277],[232] [233]. The existence of the chance-quantum (c.q.), implies that [Go 43]:  

a. if the probability of an event is equal to or greater than one c.q., it may ultimately occur.  

b.  If an event has a calculated probability of less than one cq. it will not occur.  

c. Events may differ in probability only by an integral number of cq. 

d. For an event having an appreciable probability (equivalent to many cq.), a change in 

surrounding conditions leading to a computed change in probability of less than one cq. 

will in fact cause no change in the probability of the event. 

e. The interrelations between the cq. and the “energy” quantum (as well as the elsewhere 

proposed time quantum) may be close and significant. 

The idea of quantization of probability has been used in applications of linear circuits, in 

particular in the study of circuit analysis and methods needed to adequately predict circuit performance 

as a function of components tolerances (standard deviations from the mean). To obtain maximum 

component efficiency the quantized probability design (QPD) was developed in [232] , a statistical 

method for predicting the tolerance limits for a circuit, where the parameters of are weighted according 

to their effect on the circuit as follows[232]:  

a. First-Order Weighting: Components whose parameter variations affect circuit operation 

critically are taken at end-of-life tolerance(The end-of-life tolerance includes initial tolerance 

plus environmental change plus variation due to aging.) 

b. Second-Order Weighting: Components whose parameters affect circuit operation to a 

limited extent are taken at initial (purchase) tolerances. 
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c. Third-Order Weighting: Components whose parameters have negligible effect on circuit 

operation are taken at nominal values. 

In this work, the authors quantize the tolerances (standard deviations) of the independent variables of a 

system (which follow normal distributions) ,...,, 321 xxx which then imposes quantization restrictions to 

a circuit response (the expression for the voltage gain of the circuit ,...),,( 321 xxxAy  through the 

equation for the standard deviation: 
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Furthermore, this criteria for quantization impose mathematical constraints to the probability 

density functions of variables )( ixf  as well as system response )(yf : 
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This new probability is a “quantized probability” that might need a new definition of the axioms to 

accommodate the new mathematical constraints.  

Bathtub analog. In [234], the analog of the bathtub that is filling with drops of water, which we 

perceive as a continuous flow is considered. While the level changes while an observer is out of the 

bathroom, and the changed level appears as a discrete step, rather than a continuous curve, there is still 

a continuous flow of discrete drops of water while the observer is gone. The changed level and its 

stepped appearance does not make it a discrete event system [234]. Adopting this logic, we replace the 

bathtub by the biochemistry of a cell, the drops of water by discrete quantized units of cell survival 

probability (biochemical survival units as defined below), the total water level in the bathtub by the 

continuous cell survival probability(biochemical life of the cell), which now is the sum of discrete 

quantized cell survival probabilities. This results in a duality in the perception of the nature of probability 
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of survival of the cell. This allows the interpretation of survival probability as a discrete population, 

whose dynamics can be modeled using continuous equations, in particular predator-prey equations 

where the prey is the life of the cell and the predator are the cell death effectors.     

 

Information The Oxford definition of the word information is “knowledge communicated 

concerning some particular fact, subject or event; that of which one is apprised or told; intelligence, 

news”. This definition assigns to the word a double meaning of both facts and transmission of facts9. 

This definition of information is content neutral and resembles Shannon’s approach which interprets 

information as what reduces uncertainty, and presupposes knowledge of a priori probabilities10. These 

probabilities need to be designed or calculated in a way that they will reflect the varieties of 

environmental stimuli. 

It is important to decipher the meaning of information available to a cell as something that 

determines its activity. Information has no mass, energy, or spatial extension, it cannot be seen, 

touched, or smelled. Nevertheless it is a distinct, objective entity2. This entity and can be traced through 

detectable differences. For example, the cell, as an information system has the ability to discriminate 

and select between cell fates (which is what we call cell decision making). In fact, the manifestation of 

information can be found in the existence of alphabets (where as alphabet we interpret the set of 

physical states that can be realized in some system9), the combination of codes (where as a code we 

consider a collection of the letters of alphabets that follow some pattern-words) and the variety of 

codes that determine the state of the system. 

                                                           
9
 “What is information?” Karl-Erik Sveiby Oct 1994, updated 31 Dec 1998 

http://www.sveiby.com/articles/Information.html 
10 “What is information?” Andrzej Chmielecki Philosophy and Cognitive Science 

World Congress of Philosophy, in Boston, Massachusetts from August 10-15, 1998 
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In the case of a biological cell, the genetic code is an example9. The alphabet consists of four 

nucleotides which can be discriminated by some enzyme. Any linear sequence of nucleotides in a DNA 

or RNA chain is a code, and information enters when the double helix and the enzyme polimeraze 

detects which one of the four nucleotides occurs at a particular place in the chain, and then adds to it a 

complementary one ( processes of replication and transcription).  

In our framework, the situation is different. We consider the cell an entity that processes para-

information (I1) that is delivered through transfer information (I2) while the cell possesses structural 

information (I3) and derives meta-information (MI). Here we use terminology from cognitive science, 

where “para-information” is the elemental, primordial type of information, the simplest kind of 

information and a code that can potential associate with “structural information”. In our case, 

information from stimulation (I1) is transferred through (I2), received from molecules-receptors of the 

cell and then is processed. The system adds information from its own resources ((I3), cell structure as a 

sort of memory) to the current inflow of receptor based information, and through molecular 

interactions, the molecular network of the cell produces measurable concentrations that reflect the 

association of these manifestations of information. This newly formed, resultant information is the 

“meta-information” that we model as the input of the system, with a probability distribution for the cell 

stimulation in the cell decision making algorithm. 

In the work of James, G. Miller[235] we find a definition of what a goal is for a living system:  

“By the information input of its charter or genetic input, or by changes in behavior brought about by 

rewards and punishments from its suprasystem, a system develops a preferential hierarchy of values 

that gives rise to decision rules which determine its preference for one internal steady-state value 

rather than another. This is its purpose. A system may also have an external goal. It is not difficult to 
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distinguish purposes from goals. I use the terms: an amoeba has the purpose of maintaining adequate 

energy levels, and therefore it has the goal of ingesting (= swallow) a bacterium.” 

The goal of the system of the cell is determined by a system on a higher level. The tumor or the healthy 

tissue surrounding the cell can be viewed as the super-system that performs regulatory functions (such 

as immune dynamics, angiogenesis, etc.). PDT or any other modality basically interferes with the 

operation of a cell through signals (the signals contain information which has meaning for the purpose 

of the system). The condition of an “observer” outside the system that determines the goal of the 

system is a prerequisite for the definition of information by Wiener.  

Cybernetics, as conceived by Norbert Weiner in the 1940’s, is a master science founded on the 

issues of control and communication. It is concerned with self-correcting and self-regulating systems, be 

they mechanical or human11; Cybernetics posits that the functioning of the living organism and the 

operation of the new communication machines exhibit crucial parallels in feedback, control, and the 

processing of information[236]. In the framework of cybernetics, “information must be conceived as 

discrete bundles, physically decontextualized and fluidly moving. For ultimately, the control processes 

of complex systems are a matter of regulated feedback which requires that processes of communication 

be conceived of as exchanges. Within this cybernetic model, feedback is not free and equal; rather it is 

governed by the system’s constant battle with entropy, chaotic disorganization or noise.”12 

      Finally, we notice that in the neoclassical theory of economics, price becomes equivalent to "the bit," 

in that information is reduced to a homogeneous form characterized as discrete atomic units. At the 

                                                           
11

 David Sholle, “What is Information? The Flow of Bits and the Control of Chaos” MIT communication forums, 
http://web.mit.edu/comm-forum/papers/sholle.html 

12 Pfohl, S. (1997). “The cybernetic delirium of Norbert Wiener”. In A. Kroker & M. Kroker (Eds.), Digital 

Delirium (114-131). New York: St. Martin’s Press. 
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same time conceived of as a flow; but here, this is seen within spatial and temporal dimensions 

defined in terms of the market. Information is the "energy" in the system that functions within the 

control processes of cybernetic capitalism. The enemy of the smoothly functioning market system is 

disorganization, noise, chaos. Indeed, it is reported in[237] that Hayek in 1945  lauded the informational 

properties of the price system, viewing prices as ‘quantitative indices’ (or ‘values’) :”Each index or price 

Hayek contended should be understood as concentrated information reflecting the significance of any 

particular scarce resource relative to all others. The index of price borne by each commodity, Hayek 

enthused, permits autonomous economic agents to adjust their strategies ‘without having to solve the 

whole puzzle [input-output matrix] ab intitio ". At the same time a second economic definition of 

information is conceptualized as a commodity. Information good in economics is defined as type 

commodity whose main market value is derived from the information it contains. This definition is 

related to uncertainty in that before consumption of the good, a consumer may not be able to assess 

the utility of the goods accurately and reliably, as is the case with a movie or an advertisement. In [238]  

information is defined as a commodity, and “perfect information” is considered to be the key element to 

explain efficient market hypothesis. Perfect information is defined in game theory as the information 

that is free, complete, instantaneous and universally available to a player, during and after the game, 

such as the information ones receive during a chess game, that he can see all the board and determine 

all combinations of legal moves.     

5.2 Survival (Lifetime or Life) Units Duality  

Survival Units Duality refers to the idea that the life a cell can discretized (quantized) in quanta of 

life which are assumed here as the basic units of life in every cell. New cells are produced by existing 

cells, and therefore the termination of a cell does not allow to assign any morphological or biochemical 

characteristics to the life of the cell itself, since these can only be considered as the manifestations of 
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the monitoring, interaction and response of the cell, as a biochemical unit undividedly united to cellular 

life (“life units”), to the extracellular environment. Cellular life is a set of life units, where each cellular 

life unit contains the whole complete life of the cell in itself, therefore allowing the cell to repair itself 

after any loss of survival units due to the attack of cell death inducers or other factors. In analogy to 

many-particle physics one replaces the actual cell life by a cellular life density. 

Axiomatic interpretations: 

a. Each cell’s life is made up of finite number of survival units  

b. All cells of the same type have the same life or number of life units.  

c. Survival units cannot be described biochemically, although they are results of the 

cellular biochemistry. 

d. The activity of an organism depends on the total activity of interdependent life units.    
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Figure 5.2.1. A schematic representation of the idea of cell survival units modeling. Cell life as a sum 

of survival units (quantums) , and a life quantum ( a “survival probability quantum”)  contains life in an 

embryonic form that might or might not develop to a 100% probability of survival depending on the 

state cell ( for example, recovery after photo-chemo therapeutic treatment, stress, hyperthermia, etc.).  

Russell’s Paradox and information.  Mathematics is based on generally accepted axioms of set 

theory. A set is a collection of objects, or elements.  Sets are defined by the unique properties of their 

elements and sets and elements may not be mentioned simultaneously, since sets are determined by 

their elements and therefore one notion has no meaning without other.  According to Peano's notation 

A=[239], where A is a set, P is a property, x is an element of the set A.  Bertrand Russell, while working 

on his  “Principia Mathematica” (Principles of Mathematics) in 1903, he discovered a paradox that 

arised from Frege’s set theory that leads to a contradiction [240]. It says “the sets of all sets which are 

not members of themselves contains itself.” In mathematical terms, let }:{ xxxS  ,then 

SSSS  . Although the precise rules for set formation have been under intense investigations 

and several different logicl systems have been proposed, sets that contain themselves as elements, like 

S, are definitely ruled out, as “abnormal”. Based on the work Russell and Whitehead, Kurt Gödel was 

able to show that  that a theorem could be stated within the context of Russell and Whitehead’s system 

that was impossible to prove within that system [241]. Gödel created a paradox that showed a theorem 

could be true within the framework of Principia Mathematica but was also not provable by the rules of 

Russel’s Principia Mathematica 13. Gödel’s Incompleteness Theorem states that there are mathematical 

statements that can never be proved, in any consistent system of axioms such as the arithmetic system.  

 Zermelo–Fraenkel set theory with the axiom of choice is an axiomatic system that was proposed to 

formulate a theory of sets without Russell's paradox. ZF embodies to a degree a certain conception of 

                                                           
13

 Kelly LaFleur, Russell’s Paradox, Department of Mathematics University of Nebraska-Lincoln, July 2011 
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set which is called “combinatorial” or “iterative conception” [242]. The formation of a set starts with 

some individuals, collected together to form a set. Suppose we start with individuals at the lowest level. 

At the next level, we form sets of all possible combinations of these individuals. And then we iterate this 

procedure: at the next level, we formna ll possible sets of sets and individualsf rom the first two levels. 

And so on. Given the set of all sets at a particular level, the next level will contain the members of its 

power set. Every set appears somewhere in the hierarchy [242]. At no level of the hierarchy do we reach 

the universal set of all sets; in this framework it turns out that no set is a member of itself and therfeore  

the Russell set, if it existed, would be the universal set. But there is no universal set in the iterative 

hierarchy. However, several issues have been addressed with respect to the ZF system. For example, 

issues arise in the ZF quantification over sets, and a domain of quantification is needed, but no set of    

no set in the hierarchy can serve as this domain [242].  

To overcome these issues, two alternatives have been suggested. One is the “new foundations”(NF) 

system, introduced by Quine [243], and the other is the prospects for a set theory with a universal set, 

according to program of Cantor and Von Neumann. The NF system is based on two axioms: the axiom of 

“extensionality”  and the axiom of a “comprehension schema” that uses the concepts of “stratified 

formulas”. A substantial difficulty appeared in the study of NF. The axiom of choice (AC) is an axiom of 

set theory equivalent to the statement that the product of a collection of non-empty sets is non-empty. 

Specker has shown that the axiom of choice fails in NF [244]. This evidence indicated that one should 

probably follow the alternative of admitting a universal set, with subcollections that are not sets [245]. A 

semiset is a subclass of a set, and a proper semiset is a subclass of a set that is not itself a set. Semisets 

are given via properties and predication (the attributing of characteristics to a subject to produce a 

meaningful statement combining verbal and nominal elements, a propositional function, encyclopedia 

Britannica). [242] 
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The need for the distinction between two kinds of collection [242] can be found back in the work of 

Schroder and Cantor:  

“If we start from the notion of a definite multiplicity of things, it is necessary, as I discovered, to 

distinguish two kinds of multiplicities (by this I always mean definite multiplicities). For a multiplicity can 

be such that the assumption that all of its elements "are together" leads to a contradiction, so that it is 

impossible to conceive of the multiplicity as a unity, as "one finished thing". Such multiplicites I call 

absolutely infinite or inconsistent multiplicities.... If on the other hand the totality of the elements of a 

multiplicity can be thought of without contradiction as "being together", so that they can be gathered 

together into "one thing",I call it a consistent multiplicity or a "set". 14 

Cantor’s conclusions are the ancestors of today’s distinction between classes and sets, as they appear in 

the work of Von Neumann [246].  For von Neumann all sets are classes, but not all classes are sets. And 

those classes that are not sets - the so-called proper classes -cannot themselves be members [242]. In 

Von Neumann’s axiomatization theory, some major advnatages are [242]: There are extensions for the 

predicates 'set', 'non-self-membered set', 'well-founded set', 'ordinal'. There is a well-determined 

collection of all the ZF sets; and there is a domain for quantification over sets. Further,the Axiom of 

Choice is provable in von Neumann's system.  Several issues, both technical and intuitive, have been 

reported with respect to this system. A discussion can be found in [242], and here we only mention the 

consequence of this theory, that the concept of class has no extension (based on the axioms of this 

system, there is no class of all classes, and therefore the problem has just been pushed back).  

An alternative approach involving “extensions” was suggested for the resolution if Russell’s paradox. 

The extension of a predicate is the set of tuples of values that, used as arguments, satisfy the predicate 

(a truth valued function). Such a set of tuples is a relation. But this has been shown to be a pathological 
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 Schroder (1890) and Cantor (1899), cited in van Heijenoort (1967, p. 113), copied from Simmons (2000) 
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predicate logic case  [242] with respect to universal extensions ( Russell’s paradox pushed back again). 

Therefore the resolution of this paradox remains unresolved.  

In mathematical logic, it is suggested that problems that are essentially the same must be resolved 

by the same means, and similar paradoxes should be resolved by similar means.  This is the principle of 

uniform solution[281]. Two paradoxes can be thought to be of the same kind when (at a suitable level of 

abstraction) they share a similar internal structure, or because of external considerations such as the 

relationships of the paradoxes[281].  The question rises as to the existence of other paradoxes that are 

of the same kind with Russell’s paradox. Russell, focussed more on the underlying structure of the 

paradoxes and saw them all as paradoxes of impredicativity. The “inclosure schema” was proposed by 

Priest, as a formal schema that can be used to classify paradoxes[247].  Although the schema will not be 

analyzed in this work, the conclusion is very interesting: Russell’s paradox is of one kind with the 

“sorites” paradox (the paradox of the “heap”). This paradox was introducd by to Eubulides of Miletus 

(4th century BC), a pupil of Euclid, and appears when one considers a heap of sand, from which grains are 

removed. Is it still a heap when only one grain remains? If not, when did it change from a heap to a non-

heap? These two paradoxes are neighboring paradoxes, and it has been suggested that we should not 

just consider the internal structure of the paradoxes—although that is undoubtedly important—we also 

consider the external relationships—the relationships to other nearby paradoxes [281]. important. The 

way nearby neighbours (paradoxes of one kind) respond or fail to respond to proposed treatments tells 

us something about what makes the whole family tick and about their structural similarity[281].  

The question “when is the cell dead?” indicates a confusion between cessation of organic coherence 

and cellular activity. When a cell irrevocably loses its organization, it's dead. The point when it becomes  

irrevocably damaged is related to the sorites problem.  The sorites paradox appears in the conventional 

definition of amount of substance[248].  The amount of substance n is as a quantity proportional to 
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number of entities N. This implies that n is discrete for small N while n is considered to be continuous at 

the macroscopic scale, leading to a sorites paradox. A practical criterion has been proposed in [248] for 

distinguishing between amount of substance and number of entities, that is to resolve this case of the 

sorites paradox.  In this study, the ideal gas equation TRnVP   is derived as a combination of 

Boyle’s law VP 1 , of Charles law TV  , and Avogadro’s law VN  . By substituting the molar gas 

constant by the Boltzman constant,  a brief analysis of the resulting ideal gas equation TkNVP B 

for the case 1N  ( the well known “particle in a box” situation) leads to quantization of energy, and 

therefore quantization of temperature. However, kinetic theory, assumes a large number of particles 

and this brings up the sorites paradox as the question of what is the scale at which we can consider 

temperature to be a continuous quantity of kinetic theory to be valid. An alternative metrological 

criterion for large N was poposed[248]:  

 Consider a physical quantity that depends on the amount of substance: it will obviously also 

depend on the number of entities, and its numerical value can be expressed as f (x) where x is 

the numerical value of N . 

 Consider a measurement of that quantity for xN  and for 1 xN . These measurements 

will be associated with measurement uncertainties. 

 If the difference between the two measurement results is significant with respect to the 

uncertainties in those measurement results, the quantity is considered to be discrete at xN  ; 

if not, the quantity is treated as continuous for that measurement procedure at that scale. 

In other words, if there is a significant difference in measurement result by adding a single entity the 

measurement is a count of number of entities; if there is no significant difference in measurement 

result on adding a single entity, it is a measurement of amount of substance. Temperature is one of 
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the uncertainty sources in precision dimensional measurement and probability density functions of 

temperature change are usually derived by mathematical models. 

The Ehrenfest model of diffusion was originally proposed as a model for dissipation of heat and 

to explain the 2nd law of thermodynamics. The model is defined by a system of  N particles in two 

containers, with particles independently change container.  The stochastic process 

,...),,( 321 XXXX   of the state of the system is defined by nXnX )( , the number of particles 

in one container at time  Nn , and the state space is },...,3,2,1,0{ mS   where m is the total 

number of particles. The system evolves according to the transition probability 
m

x
xxP  )1,( , 

and 
m

xm
xxP


 )1,( , Sx . A generalized form of this model is xxxP  )1,(  and 

)()1,( xmxxP   , where  is the transition rates. This last Markov process methods can be 

used in dynamic probabilistic systems to make sequential predictions, where the system can be in a 

finite number of states and the decision-making process involves a choice of several actions in each 

of those states. Solution techniques for Markov decision problems rely on exact knowledge of the 

transition rates, which may be difficult or impossible to obtain and therefore current studies focus 

on the quantification of the range of the uncertainty of the transition rates[249]. Despite of this, one 

can observe that the transition probabilities can be thought of as the measurable “physical quantity” 

that depends on the amount of substance, the number of entities. These measurements  are indeed 

associated with measurement uncertainties , the source of which is the transition rates. The 

metrological criterion that was introduced aboved can be applied here, indicating the presence of 

the sorites problem for discreteness vs continuity in the definition of the probability. Moreover, it is 

known that continuous time Markov processes, are used for the formulation of stochastic predator 

prey models that are based on withing individual variation [250], [251],  [252].  Within individual 
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variation refers to the fact that no considerations are taken of characteristics of an individual that 

affect its chance of dying. Death is treated as an intrinsically withing individual phenomenon [250]. 

For example, chance effects may lead to death of some individuals and these outcomes are likely 

regardless of the characteristics of the individuals involved. The variation is unique to the individual, 

but is unpredictable, given any particular characteristics.   

Within individual variation, used under the name of “demographic stochasticity”, has been used 

in the theory of adaptive dynamics. The theory of adaptive dynamics aim at describing the dynamics 

of the dominant trait in a population, that is called the ’fittest’ trait. The main approach is through 

stochastic, or individual centered models which in the limit of large population, can be transformed 

into integro-differential equations or partial differential equations[253]  [254, 255]. Stochastic 

simulations, using a finite size population, involve extinction phenomenon operating through 

demographic stochasticity (which is another name for the “within individual variation”) which acts 

drastically on small populations[253]. These simulations involve a unit for minimal survival 

population size, which corresponds to a single individual. In general though, typical stochastic and 

deterministic simulations do not fit and give rather different behaviors in terms of branching 

patterns. It has been observed that the notion of demographic stochasticity does not occur in 

general in deterministic population models, and an alternative proposed has been proposed in order 

to include a similar notion in these models: the notion of a survival threshold[256], which allows 

some phenotypical traits of the population to vanish when represented by too few individuals. In 

particular, through the investigations of simple and standard Lotka Volterra systems that describe 

the time  of the distribution of phenotypic traits in time, it is shown that the inadequacy of 

determinsitc models to handle extinction phenomena through demographic stochasticity, can be 

corrected by the introduction of a survival threshold, leading to a mimicking effect of the extinction 

probability due to demographic stochastcity in small sub-populations, while hardly influences the 
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dynamics of large sub-populations  [253]. In this framework, the above principle implies (at the 

extreme) that densities corresponding to less that one individual are undesirable[253], indicating 

that the link between the continuous (large populations) and  the discrete (small sub populations), 

between the existence (survival) and the vanishing (extinction – demographic stochasticity), 

between the deterministic approach (differential equations) and the stochastic approach  is 

correlated with the existence of a survival threshold in the model, originating from the discreteness 

part of this duality model. 

Furthermore, this hybrid approach of survival, as continuous-discrete function with a survival 

threshold assigned to a population, raises the following question: Is there an internal quantization 

scheme that relates the continuous models for large populations with survival thresholds to small 

populations discrete models? As mentioned above, the one is in agreement with the other in the 

appropriate limits, but the presence of the limit involves the external operation of rescaling, which is 

related according to our previous discussion to the sorites paradox.  In particular, the existence of both 

features, of continuity and quantization in a single process , appears in the study of the conditional 

survival probabilities of a firm (the computation of the conditional survival probability of the firm from 

an investor’s point of view, i.e., given the “investor information” ). Callegaro and Sagna used a 

quantization procedure, to analyze and compare the spread curves under complete and partial 

information in new and more general settings in their work on applications to credit risk of optimal 

quantization methods for nonlinear filtering. The theory of quantization probability they used was based 

on an earlier study of local quantization behavior of absolutely continuous probabilities [257]. This  

study analyzes the  
rL quantization error estimates  for  )(PLr

codebooks  for absolutely continuous 

probabilities P and and Voronoi partitions satisfying specific conditions.  But the origins of the theory 

developed there can be traced back to electrical engineering  and image processing and in particular in 
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digitizing analog signals and compressing digital images[258].  Therefore, in the heart of the study of 

survival probabilities we find a theory for the quantization as analog-to-digital conversion and as data 

compression. Analog signal is a continuous signal which transmits information as a response to changes 

in physical phenomenon and uses continuous range of values to represent information, where digital 

signals are discrete time signals generated by digital modulation and Use discrete or discontinuous 

values to represent information. The quality of a quantizer can be measured by the goodness of the 

resulting reproduction of a signal in comparison to the original. This is accomplished with the definition 

of a distortion measure that quantifies cost or distortion resulting from reproducing the signal, and the 

consideration of the average distortion as a measure of the quality of a system, with smaller average 

distortion meaning higher quality[258].  The design and analysis of practical quantization techniques can 

be tracked in three paths[258] 

 Fixed-rate scalar quantization, which adds linear processing to scalar quantization in order to 

exploit source redundancy, and variable-rate quantization (it uses Shannon’s lossless source 

coding techniques[259]  to reduce rate). Lossless codes were originally called noiseless.  

 Vector quantization, including the seminal work of Shannon and Zador, in which vector 

quantization appears more to be a paradigm for analyzing the fundamental limits of quantizer 

performance than a practical coding technique. 

This is precisely the framework we have adopted earlier in this work to study and analyze the process of 

cell survival  during treatment (in our framework).  This suggests an organic connection among an 

axiomatic system foundation, a predator prey rate equation and information theoretic signal processing.  
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Figure 5.2.2.  The existence of threshold as the link between different aspects of the modeling process. 
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Figure 5.2.3. Logical design of the steps that may lead to an organic connection of different components 

of modeling (information, axioms, rate equations)  as the new  approach to current issues in the 

foundations of mathematics.    

Quantized proptoplasm. Each water molecule represented by the formula, H2O, contains two 

hydrogen atoms and one oxygen atom, arranged in such a manner that one end of the water molecule is 

positively charged while the other end if negatively charged. In other words, each water molecule may 

be seen as a dipolar molecule[260].  In the framework of the new theory of Association Induction (AI) by 

G.Ling,  induction (the mutual electrical polarization that results in induced dipole moments, either 

through interaction with a neighboring water molecule) is not present only between pairs of water 

molecules but among all the interacting protein-water-small molecules/ion assembly that makes up the 

living cell. This is what makes the different components of the cell, functionally coherent and discrete 

cooperative assemblies. Cardinal adsorbents are defined as the biologically potent molecules that 

demonstrate an on or off action and  shift an assembly from one resting-living-cooperative state to an 
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active-living-cooperative state. Electrical polarization, or induction, thus brings about the association of 

all or virtually all water molecules in the cells[260]. if alternating positively charged P sites and 

negatively charged N sites are arranged in two dimensions at suitable distance apart like a checkerboard 

(an NP system), or if two such NP surfaces are face-to-face in close juxtaposition (an NP-NP system) or if 

alternating N and P sites are carried on linear chains among a matrix of similar chains (an NP-NPNP 

system), the interaction with and among the water molecules will be intensified. The interplay of 

induction and association can produce a stable and yet highly flexible, three-dimensional dynamic 

structure of polarized multilayers of water molecules[261]. The theory of polarized multilayers as well  

as the association induction theory, is a continuation of the studies of  Thomas Huxley (1 825-1 895) that 

suggested that the living cell is the basic unit of all life, and that the substance of living cells called the 

“protoplasm”, is “the physical basis of life”. In these two complementary theories, being alive means 

that the components of the cell substance, proteins, water and small molecules and ions are associated 

in a specific spatial relationship and in the high (negative) energy-low entropy state, called the living 

state (a cooperative state that allows for neighbor-to-neighbor electronic interaction among the 

individual elements). This idea leads to a view of the living cell as an essentially an electronic machine, 

where the electronic perturbations are not carried out through long-range ohmic conduction of free 

electrons along electric wires but by a falling-domino-like propagated short-range interaction. In the 

dead state, water and ions are to a large extent liberated and exist as free water and free ions, with a 

large entropy gain. In death, the proteins enter an internally neutralized state[262]. The minimal 

structural unit of protoplasm that preserves the basic physical properties of the whole living cell, is 

constituted by protein molecules with bound ATP, water and potassium ions and the vital activity of the 

cell is reduced to transitions between two states15:  

                                                           
15

 http://vladimirmatveev.ru/mainprinciples.html 
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  qKOnHmPimADPproteinKOHATPprotein qnm 22 )()()( .               (5.2.1)  

We need to mention here that the goald of AI hypothesis is to interpret all microscopic cell 

physiological manifestations in terms of properties and activities of microscopic molecules, atoms, ions, 

and electrons. In this direction, cell nuclei, cell mebranes and other subcellular structures  are made up 

of different variaties of macroscopic protoplasm.  Although there is great diversity in form and function 

among these components, all macroscopic protoplasms have one thing in common: They all comprise a 

vast number of of similar microscopic units called nanoprotoplasm (NP) which is claimed to be the 

smallest unit and ultimate physical basis of life[263] 
 

                                                                    

                    cbanm ATPKOHZCBAlasmnanoprotop )()())(...( 101000211 




                      

(5.2.2)
 

Where nmlcba ,,,,, are all positive integers each of the symbols, ZCBA ,...,,,  represents a different 

component protein. NP unit may contain just a single protein molecule characteristic of that particular 

protoplasm like (red blood cell cytoplasmic protoplasm),  and in more complex protoplasm, each NP unit 

may contain two or more protein molecules of different kinds and number[263]. As an example, in the 

case of a red blood cell, the nanorpotoplasm unit is composed of one hemoglobin molecule, contains 

some seven thousand water molecules, twenty 
K , a single molecule of ATP, all directly or indirectly 

attached to the single hemoglobin molecule:
 120700021 )()()()( ATPKOHHb   A quick calculation 

shows that for a spherical  nanoprotoplasm unit model, the diameter would be in the range of nano-

meters( roughly 8.6 nm) [263].  The fundamental characteristics of the dynamic structure (of chemical 

entities) shared by all nano-protoplasm can be summarized as [263]: 

 The universal possession of a long and a partially resonating polypeptide chain.  
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 The universal possession of two kinds of proximal functional groups: the β-, and γ-carboxyl 

groups and the backbone NHCO groups and their access to alternative partners, K+, Na+ or fixed 

cations (for the β-, and γ-carboxyl groups) and CONH groups belonging to the third amino-acid 

residues up and down the polypeptide chain or massive number of water molecules (for the 

backbone NHCO groups).  

 The universal presence of principle, auxiliary and pseudocardinal sites and the right kind of 

cardinal adsorbent for each of them. 

The distinction among different units is associated with the type and sequential order of amino-acid 

residues of their protein components, with  location the unit occupies in the cell, with the way these 

components associate with one another in space and in energy [263]. It is considered that fixed β-, and 

γ-carboxyl groups as the highways of information and energy transfer, where Information in this 

context is any kind of event that affects the state of a dynamic system. Using terminology from 

computer science, a nanoprotoplasm assembly unit or better “nanoprotoplasm assembler” is a “utility” 

program that converts an assembly language (a low-level symbolic code, with low abstraction) into 

executable machine code (the biochemical type of nanoprotoplasm as given by the molecular formula 

above; what this code does, is to alternate the chemical composition between two states, resting and 

active living state (or dead), and to determine the mutual spatial and energetic relationships among its 

components and in relation to the rest of the macroscopic protoplasm [263]). We conjecture that the 

low level symbolic code corresponds to a survival unit. Moreover, a compiler is a computer program (or 

set of programs) that transforms a source code from one language to another.  In the framework of a 

cell, this compiler represents the quantization of the cell survival to survival units, and the source code is 

cell survival of cell life. The physical basis for the survival unit is the nanoprotoplasm.     
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Figure 5.2.4. Cell as a programmable device. The compiler translates the higher level language into 

assembly language. The assembler translates assembly language into object code. The linker builds an 

executable program from object modules and any library modules required. 
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Life of a cell as prey and molecules as predators.  We would like to introduce a new approach to 

study the photodynamic cell killing by investigating the continuous, functionally coupled biochemical 

and signaling differential equations of apoptosis, necrosis and autophagy. The predator-prey model is 

interesting in this context both in terms of modeling the different pathways of cell killing and in terms of 

time-domain study of treatment of the cells. The framework of a predator-prey interaction is employed  

using the  concept of life unit cellular density as  the prey and molecules inducing potential cell death as  

the predators. Hybridization by normalization of all concentrations underlies the predation. Each 

isolated pathway of cell death operates according to the underlying biochemical reaction or signaling 

mechanism. The resulting cell death is obtained by coupling of all death pathways through their 

molecular effectors such as ROS according to the underlying mechanism described earlier in the 

modeling section. Some molecules contribute to both cell proliferation and cell death. Cancer cells 

suppress cell apoptosis activities, but they do not disable the entire signaling cascade [264] which is 

evidence of the existence of molecules that contribute to both processes of cellular proliferation and cell 

death. Bcl2 family members are some of these molecules that have a dual role in cell death. In particular, 

the Bcl2 family members known as BH3-only molecules, lacking domains BH1 are known to have a pro-

apoptotic character. Some members of this subfamily are Bad, Bid, BimEL, Bmf, and Mcl-1S .Some of  the 

anti-apoptotic members of the Bcl-2 family are Bax, Bok/Mtd, Bak, and Bcl-XS and they all contain at least 

one BH1 and BH2 domain . The pro-apoptotic Bcl2 members have been considered to play a role in the 

coupling of apoptosis and cell cycle arrest [264] . 

Experimental verification of MM term. Holling was able to experimentally verify and derive the 

form of this nonlinear response, which is the famous “disk equation”, identical to the Michaelis Menten 

term of enzyme kinetics,  

                                                               
xK

Vx


                                                                             (5.2.1)    
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where in the predator prey context,V is the maximum predator attack rate, K   is prey density where 

the attack rate is half-saturated. . To accommodate the difference in the time scale of predators (fast 

behavioral time scale) and the prey population (usually slower time scale), and to overcome the 

problem of incongruent time scaling, the nonlinear functional response should be expressed in terms of 

the ratio or prey to predator [265]. This expression ,when inserted in the prey equation ,solves the 

paradoxes of enrichment   and biological control[266] [265].  

5.3 The Survival Equation Model 

 This equation does not account for any predation by other molecular inducers. The effect of 

potentially competing predators on a single limited prey has been studied extensively [267] [268] [269]. 

For example, it has been shown that if the interference coefficient is small between two predators is 

small, then the winner competes its rival successfully and if the interference coefficient is large enough, 

then the competition outcome depends on the initial population of predator species [270]. As 

mentioned earlier, a suitable predator-prey theory should be based on the so-called ratio-dependent 

theory, in which the per capita prey growth rate should be function of the ratio of prey to predator 

abundance, and should have the form of an empirical Michaelis-Menten ratio-dependent predator-prey 

functional response system. With this in mind we write the equations:  
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Which in a first simple approach can be written as:  
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The double role of factors as the p53 molecule and hypoxia, points to internal system instability of the 

precise prediction of the deterministic cell death pathways as described by the biochemical and 

signaling differential equations. The p53 regulation in the modeling we scheme we use is described in 

the differential equations (down regulation of Bcl2, etc.). The observed quiescence and cell cycle arrest, 

as well as the maintenance of the cell cycle by molecules of p53 during the attack of the death inducing 

molecules (which might also be triggered by p53), we conjecture that it is a net effect of reproduction 

and loss of survival units which happens during the attack due to treatment, and is independent of the 

biochemical effects of the death inducers, but is rather a “fake death” (quiescence) mechanism of 

cancerous cells, that decrease their cell survival units as manifested by the arrest of the cell cycle, and at 

the same time preserve the wholeness of their viability and cell  life, contained in its fullness in each 

remaining life unit. We project to test this model or variations of this model against PDT cell survival 

curves and with curve fitting to determine the constants of this model. This is work in progress.  



 
 

137 
 

                      

Time (sec)

0 2000 4000 6000 8000 10000 12000 14000

C
e

ll 
S

u
rv

iv
a

l 
P

ro
b

a
b

ili
ty

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Cell Survival Probability (a)

Cell Survival Probability (b) 

Cell Survival Probability (c)

Cell Survival Probability (d) 

 

Fig.5.3.1. A sample of survival curves for the equation (4) of the cell model. Value of the parameters 

Survival curve (a) 
2

1 10V ,
4

1 10V , 6

3 10V , 1010R , 101 K , 102 K , 7

3 10K ,  

15

1 10w , 12 w , 4

3 102w . Survival curve (b) 
1

1 10V ,
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1 10V , 6

3 10V , 1010R , 

101 K , 102 K , 7

3 10K ,  
15

1 10w , 12 w , 4

3 102w . Survival curve (c) 
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12 w , 13 w .  
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Fig.5.3.2 An logical design application of the Predator-Prey equations for different time domains where 

different cell death inducers are activated. In a cellular automaton, it will be possible to determine the 

route of damage. Necrotic and apoptotic cell death proceed in different time scales. Necrosis is a form 
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of cell death that occurs rapidly (minutes) in response to severe insult. Apoptosis is a slower form of 

death lasting for many hours or days.  

5.4 Conclusion 

We have developed a phenomenological modeling framework for cell decision making. The 

purpose is to provide a systematic method for discovering and expressing correlations in experimental 

data o cell survival curves and detailed biochemical pathways. The modeling framework is based on 

network modeling dynamics for cellular biochemical reactions, coupled to “signal transmission rules” 

which describe certain features of the mechanism of cell decision making.  As an example of the 

application of our methodology to a specific biological system, it is shown in detail how to derive a 

testable model of the molecular network and mechanism leading to cell death in a point like model for a 

PDT treated cancer cell.  The framework presented here is designed to discover and express correlation 

in data, even when knowledge of underlying mechanisms is incomplete[195]. Our approach is feasible 

and has predictive value. As it can be shown with the use of the Blahut Arimoto algorithm, there is large 

variability in the decision mechanism and it depends on the distortion function. Despite of this there is 

some agreement of the derived graphs with existing data on survival curves, from hydrogen peroxide 

treatment of cells (work in preparation). Due to the normalization of the concentrations in the phase 

space of stimuli, an expected variation for different initial conditions of the photosensitizer and different 

molecular oxygen concentrations is not evident.   This is a coding disadvantage of linking the 

biochemical reaction equations to the cell decision mechanism.  In other words, how the process of 

modeling the bio molecular reaction is integrated into the entire cell decision process is essential for a 

fully quantifiable prediction and numerical simulation of this complex physical system. Despite of this, 

our model ,  
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 develops an understanding of the physical system of a cell and the process of decision making 

when the cell is treated with photo-chemo therapy (conceptual model).  

 translates biophysics describing our understanding into a mathematical system (mathematical 

model) 

 develops a solution of the mathematical model using numerical, analytic and graphical 

techniques (numerical model).  

 In [87], a method is provided for the accurate determination of the distortion function. If the 

conditional probability ),( xyp
XY

minimizes the mutual information ),( YXI , then it satisfies the 

equations mentioned above, and this fact can be used to compute the distortion function around which 

a given pathway ),( xyp
XY

 is optimized. More precisely, after algebraic rearrangements of the 

equations of the decision algorithm the equation gives the distortion measure in this reference, is:  
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Where )(),( xgdeathyxd  is a function such that  

                                        0)},(),,(min{  survivalyxddeathyxd                                                    (5.4.2)  

),( xyp
XY

is calculated experimentally, and the actual distortion function is then computed with the 

use of these equations, where s becomes just a scaling factor. This method can be applied in our 

modeling scheme where ),,( 321 xxxx . The required function is the ),( xyp
XY

 that it remains to be 

determined by experiments on the PDT cell survival.  
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To summarize our study, we have extended a previous rate-equation model in time domain with 

oxygen diffusion in a spherical cell. Different oxygen diffusion mechanisms through cell membrane and 

inside the cell have been investigated within the context of PDT. We have found that the widely 

accepted cell model of oxygen diffusion using the Michaelis–Menten term can be significantly improved 

and investigated the range of parameters of the rate equations for modeling of photobleaching and cell 

killing.  

We have also provided a mathematical model of the mechanism for making binary fate decisions 

about cell death or survival, during and after type II photodynamic therapy (PDT) treatment, and 

supplied the logical design for this decision mechanism as an application of rate distortion theory to the 

biochemical processing of information by the physical system of a cell. Based on system biology models 

of the molecular interactions involved in the PDT processes previously established, and regarding a 

cellular decision-making system as a noisy communication channel, we use rate distortion theory to 

design a time dependent three dimensional Blahut-Arimoto algorithm where the input is a stimulus 

vector composed of the time dependent concentrations of three PDT related cell death signaling 

molecules and a cell fate decision as output. The molecular concentrations are determined by a group of 

rate equations. The output is the cell decision with a probability of cell survival or death. The optimality 

of the cell decision strategy is assessed by the cell survival probability, which might be modified to 

account for heterogeneous cell resistance to therapy. 

The model of the detailed molecular pathways and biochemical events induced by Type II PDT 

treatment leading to cell death that can occur through a multiplicity of different mechanisms such as 

apoptosis, autophagy, and necrosis, presented in this study, is based on corrected previous biological 

knowledge related with PDT, and a new cell survival probability equation is also proposed based on a 
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predator prey model as a measure of the PDT tumor cell killing, which can be difficult to quantify 

through  experimental verification of the molecular concentrations of the cytotoxic agents. 

With these models at hand, one can proceed to cellular automata designs. Building appropriate 

numerical algorithms for a functional automaton that can simulate the tumor environment starts with 

the determination of occupation status on the grid points of a given automaton (normal cell, cancer cell, 

empty space , or vessel) , cell status ( proliferative or quiescent state), local (intracellular) molecular 

concnetrations , and prescribed local rules that update a given element on the basis of its own state and 

those of its neighbors at a previous time step. These rules will originate by generic features of tumor 

growth such as the ability of cancer to elude the control mechanisms which maintain stasis in normal 

tissues. The cancer cells can be endowed with the ability to survive hypoxia longer than normal cell. The 

cell decision making process, as well as the survival probabilities, are the first steps in this direction. 

The hard work is yet to be done: researchers will need to formulate and verify models, estimate 

kinetic parameters, make non-obvious predictions and test them by quantitative experimental 

measurements[101]. It is a matter of time before effective, integrated models of regulatory networks in 

cancer cells is used as an informational supplement for the next wave of experiments and therapies



 
 

 
 

 

CHAPTER 6: SUMMARY  

The primary goal of this thesis was the assessment of cell killing by photodynamic therapy and 

the application of logical and computational-theoretic techniques to better understand the foundational 

nature of cell decision making for cell fate determination ( mainly cell death/survival)  during treatment. 

Looking for the link between the cellular decisions due to photochemical treatment and the biochemical 

dynamics in signal transduction occuring on a time scale of minutes to hours, is a powerful way to gain 

insights. The establishment of principles that describe observed patterns in PDT cell killing, should lead 

to predictions that can be tested.  Although experimental verification of these predictions can be 

difficult, if not impossible, our system demonstrates the generative principle of an experiment-based 

modeling method  that reflects an understanding of the experimental results, formalizes essential 

processes and puts in adequate equations visible and hidden parameters16.  A model based analysis of 

the photochemical interactions involved in PDT and the corresponding  distributions was carried out, for 

illumination times and drug concentrations found in current literature. This is important since, therapy 

design can be integrated into a predictive treatment planning model for PDT cancer therapy.  

We develop a reaction diffusion system by considering the oxygen diffusion in a spherical cell 

which consists of a surface membrane. This is an analytic model of diffusion in a biological system which 

is developed and examined through numerical simulations. Two mechanisms of PDT cytotoxicity are 

evaluated and a differential equation for comparison of the spheroid cell survival data to existing 

experiments is introduced. We obtain the cell survival ratio as a function of light fluence or initial 

photosensitizer concentration with different photon density or irradiance of incident light and other 

parameters of oxygen transport. The results show that this model of Type-II PDT yields a powerful tool 

                                                           
16

 Serguei Sokol 2007-09-06, BioPlot user's guide,  
http://biopuce.insa  toulouse.fr/ExperimentExplorer/doc/BioPlot/node2.html 
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to quantify various events underlying PDT at the molecular and cellular levels and to interpret 

experimental results of in vitro cell studies [117].  

Based on existing system biology models, we have developed a detailed molecular PDT model that 

includes 70 types of molecules and their corresponding interactions, pathways and biochemical events 

induced by PDT treatment. Molecular interactions, rate equations, reaction constants and initial 

concentrations have been identified in the literature and used in the composition of the (up to our 

knowledge) first explicit PDT system. The biochemical equations are represented by the general mass-

action paradigms and the protein regulatory network  paradigms. Then, the decision making process is 

analyzed using the framework of rate distortion theory. The benefit of this approach is that it provides a 

perspective on decision making regarding these several cell tasks as a single process.  The cell is 

considered as an information quantizer that processes information through biochemical signaling and 

generates a cell fate. The average mutual information as the mean amount of information that 

knowledge of the value assumed by the input supplies about the value assumed by the output, is used 

to assess the reliability molecular signaling and cell fate determination.  The mathematical analysis uses 

the methods of the Lagrange and an augmented functional of mutual information is minimized. The 

computational solutions are determined with the development of a time dependent Blahut Arimoto 

algorithm and cell survival curves are obtained that match patterns observed in cell killing studies.  

Several disciplines have contributed to the development of PDT [271]: chemistry in the 

development of new photosensitizing agents, biology in the elucidation of cellular processes 

involved in PDT, pharmacology and physiology in identifying the mechanisms of distribution of 

photosensitizers in an organism, and physics in the development of better light sources, 

construction of imaging devices, etc. to briefly mention just a few from a large set of 

applications. These are all important parameters for optimally effective PDT. The present study 

gives way to one more discipline for contribution: information. The field of information and 
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mathematics that studies the technical process of information is communication theory [259] 

and in particular the branch of rate distortion theory, is used as a theoretical foundation for 

lossy data compression.   

The link between the cell survival probbaility and the rate distortion theory is the idea of 

quantization of probability that is reflected in the predator prey form of the cell survival 

equation. Starting from cell survival differential equation, we identify the similarities to the 

dynamic energy budget models that study the “strategy” that an organism might develop to 

optimize its overall fitness, measured, for example, by a net reproductive output. The 

probability of survival for an individual organism is determined by the principal hazard for most 

creatures which is predation, and the risk of predation is dependent on the size of the 

organism. This is the link between predator prey theory and the idea of the development of a 

strategy. Then,  we observe that this idea which has been used in applications of linear circuits  

to adequately predict circuit performance as a function of components tolerances. This is the 

link between quantized probability and communication channels.  Linking quantized probability 

to predator prey theory implies the link between the development of a strategy and the 

existence of a communication channel, which in turn, implies the use of rate distortion theory 

according to Shannon’s program.  A new set theoretic approach is also introduced through the 

definition of cell survival units or cell survival units indicating the use of “proper classes” 

according to  the Zermelo–Fraenkel set theory and the axiom of choice, as the mathematics 

appropriate for  the development of biological theory of cell survival.   
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  Cancer cells grow and divide at an unregulated pace. There are several differences between normal 

cells and cancer cells17. With respect to structure, normal cells have DNA in their genes and 

chromosomes that functions normally and they divide in an orderly way to produce more cells only 

when the body needs them. Cancer cells develop an aberrant DNA or gene structure or acquire 

abnormal numbers of chromosomes and continue to be created without control or order. This leads to 

an  excess cells form a mass of tissue called a tumor. With respect to energy, normal cells derive most of 

their energy from a process called the Krebs cycle and only a small amount from from the process of 

glycolysis, and the means to derive these energies is oxygen. The opposite is true for cancer cells. With 

respect to blood vessels, normal cells have a built in blood vessel system, something that cancer cells are 

lacking. With respect to functions, normal cells have enzymes and hormones that behave in a balanced 

manner, where instead, cancer cells have either overactive or underactive enzymes and hormones. With 

respect to tumors, benign tumors of normal cells are not cancerous. They do not invade nearby tissues 

or spread to other parts of the body. Can be removed and are not a threat to life. Malignant tumors of 

cancer cells are cancerous and can invade and damage nearby tissues and organs and can break 

away and enter the bloodstream to form new tumors in other parts of the body, a process 

called metastasis. With these observations in mind, the modeling techniques we introduced are 

or will be ( in the frame of cellular automata) suitable for testing of several hypotheses such as: 

 Reactive oxygen species (ROS) function as signaling molecules in many aspects of 

growth factor-mediated angiogenesis. Changes in oxygen concentrations regulate neo-

vascularization through induction of vascular endothelial growth factors (VEGF). 

                                                           
17

 Healthy Cells vs. Cancer Cells, A.P. John Institute for Cancer 
Researchhttps://www.apjohncancerinstitute.org/frequently-asked-questions/healthy-cells-vc-cancer-cells 
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 Post operative PDT causes oxygen related stimulation of immune response that under 

certain conditions can provoke tumor remission. 

 PDT produces its tumoricidal effect through the generation of singlet oxygen and other 

oxygen species, which are toxic to cells and might also lead to destruction of the tumor 

microvasculature. 

This present modeling approach can be developed further through coupling with extisting 

models of tumor neovascularization and the oxygen regulated tumor-immune dynamics with 

angiogenesis taken into account, to study the effect of type II PDT oxygen diffusion in the tumor 

macroenvironment with a small remnant of tumor tissue left after surgical resection as the 

initial condition. This way, it can be used as a platform to examine the potential applications of 

PDT  for post-operational treatment to eliminate or manage the tumor regression and 

reformation of tumor vasculature. Moreover, the problem can be enriched by other prameters 

such as the effect of heating tissue using during PDT treatment, which decreases the viscosity of 

fluid elements, increases metabolic rate, increases blood flow which assists in the reduction of 

swelling, stimulates the immune system. All these factors might play a significant role in the 

final outcome.   

Hopefully, utilization of this optimization model will initiate a program that will enable a 

physician to evaluate photochemical tumor treatment and to better design a patient-specific 

therapy to achieve maximum destruction of the tumor and injury minimization of healthy tissue 

by controlling time, fluence and drag concnetrations in tissue.  



 
 

 
 

 

APPENDIX A 

THE SET OF VALUES OF THE COEFFICIENTS ADOPTED IN THE MODEL OF  CHAPTER 3 

Table 1 

The following coefficients are used to solve the differential equations, their sources were given in Table 

1 of Reference[7] unless noted otherwise. 

v  Light speed in tissue 2.17×1010cm/s 

psa  Cross section of light absorption of cells 

containing 0S  

5.0×10-13cm2 

1  Relaxation time of 1S to 0S  10 ns 

3  Relaxation time ofT to 0S  30 μs 

0  Relaxation time of 2

1O to 2

3O  30 ns 

10  Quantum yield of 1S to 0S  0.20 

13  Quantum yield of 1S  inter-system crossing to 

T  

0.80 

30  Quantum yield of T to 0S  0.30 

s  Efficiency factor for energy transfer fromT to 

2

3O  

1×10-17 

0  Quantum yield of 2

1O transition to 2

3O  0.30 

pbk  Photo bleaching rate 2.0x10-10 cm3s-1 

cxk  Cytotoxicity rate 2.0x10-9 cm3s-1 

iC][  Initial concentration of oxygen scavengers 1.0x103 cm-3 

mK  Michaelis constant for oxygen uptake 1.5×1017 cm-3 

iR][  Initial concentration of unoxdized receptors 5.0×1017 cm-3 

0  Rate coefficient of cell killing by oxidized 
receptors 

1.0×10-2 

cV  Maximum rate of cell killing by single oxygen 4.0x10-3 cm3s-1 

cK  Michaelis constant for singlet oxygen uptake 
in cell killing 

2.0×109 cm-3 
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THE SET OF ORDINARY DIFFERENTIAL EQUATIONS AND PARAMETERS ADOPTED IN THE MODEL OF 

CHAPTER 4 

 
 

Table 2 

 

State Variable  Initial 
concentration 

     

Initial 
concentration 
(Molarity) 

Initial 
concentration 

(  
         

    
)  

Refere
nce 

[ ]    3.1x1012 cm-3 5.1x10-9 (       )
 (      [  ]  
(     ) 

[100] 

[ ]                   3.4x10-10  2x102 [100] 
[   ]     0 0 0 [100] 
[  ]    0 0 0 [100] 
[    ]    1.02x1011 cm-3 1.7x10-10 102 [100] 

[       ]    0 0 0 [100] 
[  ]    2.05x1013cm-3 3.4x10-8 2x104 [100] 

[     ]    0 0 0 [100] 
[   ]    0 0 0 [100] 
[   ]     1.02x1012 cm-3 1.7x10-9 103 [100] 

[       ]     0 0 0 [100] 
[  ]     1.02x1013 cm-3 1.7x10-8 104 [100] 

[      ]     0 0 0 [100] 
[   ]     0 0 0 [100] 
[  ]     1.02x1013 cm-3 1.7x10-8 104 [100] 

[      ]     0 0 0 [100] 
[   ]     0 0 0 [100] 

[      ]     0 0 0 [100] 
[    ]     1.02x1014 cm-3 1.7x10-7 105 [100] 

[        ]     0 0 0 [100] 
[    ]     1.02x1015 cm-3 1.7x10-6 106 [100] 

[        ]     0 0 0 [100] 
[     ]     0 0 0 [100] 
[   ]     5.0x1013 cm-3 6.6x10-8 4x104 [100] 

[       ]     0 0 0 [100] 
[    ]     0 0 0 [100] 
[     ]     2.05x1013cm-3 3.4x10-8 2x104 [100] 

[          ]     0 0 0 [100] 
[   ]     1.02x1014 cm-3 1.7x10-7 105 [100] 

[        ]     0 0 0 [100] 
[    ]     0 0 0 [100] 
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[    
 ]     0 0 0 [100] 

[    ]     2.89x1014cm-3 4.8x10-7 2x104 [100] 
[    

      ]     0 0 0 [100] 
[    ]     0 0 0 [100] 

[         ]     0 0 0 [100] 
[    ]     0 0 0 [100] 

[         ]     0 0 0 [100] 
[ ]     7.22x1015cm-3 1.2x10-5 5x105 [100] 

[      ]     0 0 0 [100] 
[  ]     0 0 0 [100] 
[    ]     7.22x1015cm-3 1.2x10-5 5x105 [100] 

[       ]     0 0 0 [100] 
[    ]     0 0 0 [100] 
[     ]     1.44x1015cm-3 2.4x10-6 105 [100] 

[        ]     0 0 0 [100] 
[     ]     0 0 0 [100] 
        0 0 0 [100] 
[    ]     1.02x1014 cm-3 1.7x10-7 105 [100] 

[        ]     0 0 0 [100] 
[     ]     0 0 0 [100] 
[  ]     1.02x1014 cm-3 1.7x10-7 105 [100] 
[    ]     0 0 0 [100] 

[       ]     0 0 0 [100] 
[    ]     0 0 0 [100] 

[         ]     0 0 0 [100] 
[         ]     0 0 0 [100] 

[    
 ]     0 0 0 [100] 

[  ]     2x1010(cm-3) OR 
2x1014cm-3 

3.3x10-11 
3.3x10-7 

2x101 

2x105 
[102] 

[  ]     0 0 0 [102] 
[ ]     0 0 0 [102] 

                [3O2]      6x1017 cm-3 10-4  6x107 [102] 

                [1O2]      0 0 0 [102] 
                  [R]      5x1017cm-3 8.3x10-4 4.5x108 [102] 

[    ]     7.5x1012 

7.5x1012 
12.5x10-9 

12.5x10-8 
7.5x103 [272] 

[    ]     6.022x1013 10-7 6x104 [273] 
[     ]     9.0x1013 1.5x10-7 9x104 [7] 
[   

 ]     6.022x1012 or 
6.022x1013 

10-8 to 10-7  6x104 [8] 

[   ]     6.022x1013 10-7 6x104  
[   ]     2.4x1018 4x10-3 2.4x109 [152, 

274] 

 

 
Table 3 
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Number                                                        Rate Equation Reference 

(1)    
  

               
[100] 

(2)    
  

               
[100] 

(3)    
  

                   
[100] 

(4)    
  

                                     
[100] 

(5)    
  

               
[100] 

(6)    
  

              
[100] 

(7)    
  

                              
[100] 

(8)    
  

                    
[100] 

(9)    
  

                                                

                          

[100] 

(10)     
  

                 
[100] 

(11)     
  

                
[100] 

(12)     
  

                                   
[100] 

(13)     
  

                      
[100] 

(14)     
  

                                                   

                       

[100] 

(15)     
  

                  
[100] 

(16)     
  

                       
[100] 

(17)     
  

                            
[100] 

(18)     
  

                      
[100] 

(19)     
  

                                      

                           

[100] 

(20)     
  

                       
[100] 

(21)     
  

                  
[100] 

(22)      
  

                       
[100] 
 

(23)     
  

       
[100] 
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(24)     
  

                   
[100] 

(25)     
  

                         
[100] 

(26)     
  

                                                   
[100] 

(27)     
  

                    
[100] 

(28)     
  

                   
[100] 

(29)      
  

                      
     

 

   
      

 
[100] [152] 

(30)     
  

                          
[100] 

(31)      
  

                        
[100] 

(32)     
  

                
 

 
                  

 

 
      

           
[100] 

(33)     
  

  
 

 
                  

 

 
                  

 

 
         

                   
   
 

   
      

 

[100] [192] 
[152] 

(34)     
  

 
 

 
                  

[100] 

(35)     
  

 
 

 
      

          
 

 
                  

 

 
      

 

          

[100] 

(36)     
  

 
 

 
                  

[100] 

(37)     
  

 
 

 
      

          
 

 
                  

 

 
         

         

[100] 

(38)     
  

 
 

 
                  

[100] 

(39)     
  

  
 

 
                  

[100] 
 

(40)     
  

 
 

 
                         

[100] 

(41)     
  

        
 

 
                         

 

 
                 

        

[100] 

(42)     
  

  
 

 
                  

[100] 

(43)     
  

 
 

 
                         

[100] 

(44)     
  

                       
[100] 

(45)     
  

  
 

 
                  

[100] 
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(46)     
  

 
 

 
                         

[100] 

(47)     
  

                       
[100] 

(48)     
  

                                         
[100] 

(49)     
  

                    
[100] 

(50)     
  

                           
[100] 

(51)     
  

                          
[100] 

(52)     
  

                    
[100] 

(53)     
  

                                                     

         

[100] 

(54)     
  

                          
[100] 

(55)     
  

                                  
[100] 

(56)     
  

                   
[100] 

(57)     
  

                   
[100] 

(58)     
  

       
[100] 

(59)     
  

            
 

    (   )
                         

[102] 

(60)     
  

          
 

    (   )
    

[102] 

(61)     
  

                       
[102] 

(62)     
  

                   
   

     
      

 
[102] 

(63)     
  

                      
                     

[102] 

(64)     
  

                      
[102] 

(65)     
  

   (
 

      (        )
    ) 

[275] 

(66)     
  

   (
 

      (         )
    ) 

[275] 

(67)     
  

   (
  

      (          )
    ) 

[275] 

(68)     
  

       (       )         
[275] 

(69)     
  

    (
  

      (                 )
    ) 

[275] 
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(70)     
  

      
      
     

 
[274] 

 

Table 4 

Constant Units 
(molecules/CC) 

Reference  Constant Units Reference 

          [100]          [100] 
        [100]           [100] 
        [100]          [100] 
        [100]          [100] 
        [100]          [100] 
        [100]            [100] 
        [100]            [100] 
          [100]          [100] 
        [100]            [100] 
         [100]            [100] 
         [100]            [100] 
         [100]          [100] 
         [100]            [100] 
         [100]            [100] 

 

Constant Units 
(molecules/CC) 

Reference  Constant Units Reference 

         [100]           [100] 
         [100]            [100] 
         [100]           [100] 
         [100]           [100] 
         [100]           [100] 
         [100]           [100] 
         [100]           [100] 
         [100]           [100] 
         [100]           [100] 
          [100]           [100] 
          [100]           [100] 
          [100]           [100] 
          [100]           [100] 
          [100]           [100] 

 

Constant Units 
(molecules/CC) 

Reference  Constant Units Reference 

        [100]       [100] 
     [100]        [100] 
     [100]       [100] 
     [100]       [100] 
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     [100]       [100] 
     [100]        [100] 
     [100]        [100] 
       [100]       [100] 
     [100]       [100] 
      [100]       [100] 
      [100]       [100] 
      [100]       [100] 
      [100]       [100] 
      [100]       [100] 

 

Constant Units 
(molecules/CC) 

Reference  Constant Units Reference 

          [100]          [100] 
        [100]           [100] 
        [100]          [100] 
        [100]          [100] 
        [100]          [100] 
        [100]            [100] 
        [100]            [100] 
          [100]          [100] 
        [100]            [100] 
         [100]            [100] 
         [100]            [100] 
         [100]          [100] 
         [100]            [100] 
         [100]            [100] 

 

Constant Value Reference  Constant Units Reference 

           treatment            [102] 
       Steepness              [102] 
          [102]       [102] 
             [102]           [102] 
           [102]           [102] 
             [102]           

   

   
 [102] 

          [102]        [100] 
            [102]            [274] 
        [102]            [274] 
        [102]            [274] 
        [102]                  
          

   

   
 [102]       (     )

 (      ) 
 

            

        

          

[102]                  
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   [102]       (     )

 (      ) 
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