Table 1. The voxel based morphologic parameters based on 3D reconstruction

ID#	Long name	Short name	Symbol	Unit	Definition
1	Cell grid perimeter	CLGP	GPc	μm	$GP_c = N_{s,cyto} a_{vxl} \tag{1}$
2	Cell surface area	CLSF	S _c ⁽⁴⁾	μm ²	$S_c = N_{s,cyto} s_{vxl} \tag{2}$
3	Cell volume	CLVM	V _c (3)	μ m ³	$V_c = (N_{v,cyto} + N_{v,nucl} + N_{v,mito})v_{vxl} $ (3)
4	Cell surface to volume ratio	CLSV	SVr _c	μm ⁻¹	$SVr_c = S_c / V_c$
5	Cell surface irregularity index	CLSI	SIic	μm ^{-1/2}	$ISI_c = GP_c / \sqrt{V_c}$
6	Cell equivalent spherical radius	CLER	ER_c	μm	$ER_c = (\frac{3V_c}{4\pi})^{1/3}$
7	Cell volume sphericity index	CLVS	VSi _c	_	$VSi_c = 4\pi ER_c^2 / S_c = (36\pi V_c^2)^{1/3} / S_c$
8	Average distance of cell membrane voxels to centroid	CLDM	<r<sub>c></r<sub>	μm	$< R_c > = \sum_{i=1}^{N_{s,cyto}} R_c(i) / N_{s,cyto}$ (4)
9	Standard deviation of R _c	CLDS	ΔR_{c}	μm	$\Delta R_c = \left\{ \frac{1}{N_{s,cyto}} \sum_{i=1}^{N_{s,cyto}} (R_c(i) - \langle R_c \rangle)^2 \right\}^{1/2}$
10	Cell protrusion volume	CLPV	V_p	μm^3	$V_{cp} = V_c - V_{c0}$ (5)
11	Cell protrusion number	CLPN	N_p	-	
12	Nuclear grid perimeter	NRGP	GP_n	μm	$GP_n = N_{s,nucl} a_{vxl}$
13	Nuclear surface area	NRSF	Sn	μ m ²	$S_n = N_{s,nucl} s_{vxl}$
14	Nuclear volume	NRVM	V_n	μm^3	$V_n = N_{v,nucl} v_{vxl}$
15	Nuclear surface to volume ratio	NRSV	SVr _n	μm ⁻¹	$SVr_m = S_m / V_m$
16	Nuclear surface irregularity index	NRSI	SIin	μm ^{-1/2}	$ISI_n = GP_n / \sqrt{V_n}$
17	Nuclear equivalent spherical radius	NRER	ER_n	μm	$ER_n = (\frac{3V_n}{4\pi})^{1/3}$
18	Nuclear volume sphericity index	NRVS	VSi_n	_	$VSi_n = 4\pi ER_n^2 / S_n = (36\pi V_n^2)^{1/3} / S_n$
19	Average distance of nuclear membrane voxels to centroid	NRDM	$\langle R_n \rangle$	μm	
20	Standard deviation of R _n	NRDS	ΔR_n	μm	$ < R_n > = \sum_{i=1}^{N_{s,nucl}} R_n(i) / N_{s,nucl} $ $ \Delta R_n = \left\{ \frac{1}{N_{s,nucl}} \sum_{i=1}^{N_{s,nucl}} (R_n(i) - \langle R_n \rangle)^2 \right\}^{1/2} $
21	Mitochondrial grid perimeter	MNGP	GP_m	μm	$GP_m = N_{s,mito} a_{vxl}$
22	Mitochondrial surface area	MNSF	$S_{\rm m}$	μm^2	$S_m = N_{s,mito} s_{vxl}$
23	Mitochondrial volume	MNVM	V _m	μm^3	$V_{m} = N_{v,mito} v_{vxl}$
24	Mitochondrial surface to volume ratio	MNSV	SVr _m	μm ⁻¹	$SVr_m = S_m / V_m$
25	Mitochondrial surface irregularity index	MNSI	SIi _m	μm ^{-1/2}	$ISI_m = GP_m / \sqrt{V_m}$
26	Mitochondrial equivalent spherical radius	MNER	ER_m	μm	$ER_m = 3 / SVr_m$
27	Nucleus-to-cell centroid distance	NCCD	$\mathrm{CD}_{\mathrm{nc}}$	μm	$D_{nc} = \left \mathbf{r}_{\mathbf{nc}} - \mathbf{r}_{\mathbf{cc}} \right \tag{6}$
28	Nucleus-to-cell volume ratio	NCVR	Vr_{nc}	-	$Vr_{nc} = V_n / V_c$
29	Mitochondrion-to-cell volume ratio	MCVR	Vr _{mc}	-	$Vr_{mc} = V_m / V_c$

 a_{vxl} = voxel side length = d_x = d_y ≈ d_z , where d_x and d_y is the pixel size along x- and y-axis, respectively, while d_z is the distance between two neighboring interpolated slices. The side length d_z is obtained by requiring d_z ·(N_{int}+1) ≈ z_step·f_scale with N_{int} as the integer number of interpolated slices between two raw slices and z_step=0.5µm as the translation step size along z-axis, f_scale=0.87 is the correction factor for light refraction.

 $N_{s,xxxx}$ = number of surface or membrane voxels for the organelle xxxx, s_{vxl} = 1.414 · $a_{vxl}d_z$ = area of the diagonal plane of one voxel (see figure below) as the average surface area of the membrane voxels. A surface voxel of a specific organelle is defined as the one

- which has at least one of the six neighboring voxels belong to another organelle or the host medium outside of the cell.
- N_{v,xxxx} = number of volume voxels for the organelle xxxx which includes the surface voxels and interior voxels, v_{vxl} =volume of voxel= $d_x d_y d_z$.
- (4) $R_c = |\mathbf{r}_{cs}(i) \mathbf{r}_{cc}|$ with $\mathbf{r}_{cs}(i) = (\mathbf{x}_{cs}(i), \mathbf{y}_{cs}(i), \mathbf{z}_{cs}(i)) \mathbf{d}_{av}$ as the position vector of the ith voxel on the cell surface or membrane and $\mathbf{r}_{cc} = (\mathbf{x}_{cc}, \mathbf{y}_{cc}, \mathbf{z}_{cc}) \mathbf{d}_{av}$ as the position vector of the cell centroid, $\mathbf{d}_{av} = (\mathbf{d}_x + \mathbf{d}_y + \mathbf{d}_z)/3$. The component coordinates of \mathbf{r}_{cc} are defined as $\mathbf{x}_{cc} = \sum_{i=1}^{N_{v,cell}} x(i) / N_{v,cell}$ with $N_{v,cell} = N_{v,cyto} + N_{v,nucl} + N_{v,mito}$, etc..

- V_{c0} = cell volume after removing the protrusions through the opening morphology operation (an erosion followed by a dilation using the same structuring element for both operations) on the confocal image slices.
- (6) $\mathbf{r}_{nc} = (\mathbf{x}_{nc}, \mathbf{y}_{nc}, \mathbf{z}_{nc}) \mathbf{d}_{av}$ is the position vector of the nuclear centroid with its components defined as $\mathbf{x}_{nc} = \sum_{i=1}^{N_{v,nucl}} x(i) / N_{v,nucl}$, etc..

Table 2. The GLCM and pixel intensity parameters extracted from an input image

ID#	Long name	Short name	Definition (1)	
1	Angular second moment (or energy or homogeneity)	ASM	$\sum_{i=0}^{G-1} \sum_{j=0}^{G-1} \{p(i,j)\}^2$	
2	Contrast (or inertia)	CON	$\sum_{k=0}^{G-1} k^2 p_{x-y}(k)$	
3	Correlation	COR	$\frac{\sum_{i=0}^{G-1} \sum_{j=o}^{G-1} (i - \mu_x)(j - \mu_y) p(i, j)}{\sigma_x \sigma_y} = \frac{\sum_{i=0}^{G-1} \sum_{j=o}^{G-1} (ij) p(i, j) - \mu_x \mu_y}{\sigma_x \sigma_y}$	
4	Variance	VAR	$\sum_{i=0}^{G-1} \sum_{i=0}^{G-1} (i - \mu_x)^2 p(i, j) = \sum_{i=0}^{G-1} (i - \mu_x)^2 p_x(i)$	
5	Inverse difference moment (or local homogeneity)	IDM	$\sum_{i=0}^{G-1} \sum_{j=0}^{G-1} \frac{1}{1 + (i-j)^2} p(i,j)$	
6	Sum average (or mean value of 1st and 2nd gray-levels)	SAV	$\sum_{k=0}^{2G-2} k p_{x+y}(k) = \mu_x + \mu_y = 2\mu_x$	
7	Sum entropy	SEN	$-\sum_{k=0}^{2G-2} p_{x+y}(k) \cdot \log(p_{x+y}(k))$	
8	Sum variance	SVA	$\sum_{k=0}^{2G-2} (k - SAV)^2 p_{x+y}(k)$	
9	Entropy	ENT	$-\sum_{i=0}^{G-1} \sum_{j=0}^{G-1} p(i,j) \cdot \log(p(i,j))$	
10	Difference entropy	DEN	$-\sum_{k=0}^{G-1} p_{x-y}(k) \cdot \log(p_{x-y}(k))$	
11	Difference variance	DVA	$\sum_{k=0}^{G-1} k^2 p_{x-y}(k) - (\sum_{k=0}^{G-1} k p_{x-y}(k))^2$	
12	Dissimilarity	DIS	$\sum_{i=0}^{G-1} \sum_{j=0}^{G-1} i-j \; p(i,j)$	
13	Cluster shade	CLS	$\sum_{i=0}^{G-1} \sum_{j=o}^{G-1} (i+j-\mu_x-\mu_y)^3 p(i,j) = \sum_{i=0}^{G-1} \sum_{j=o}^{G-1} (i+j-2\mu_x)^3 p(i,j)$	
14	Cluster prominence	CLP	$\sum_{i=0}^{G-1} \sum_{j=o}^{G-1} (i+j-\mu_x-\mu_y)^3 p(i,j) = \sum_{i=0}^{G-1} \sum_{j=o}^{G-1} (i+j-2\mu_x)^3 p(i,j)$ $\sum_{i=0}^{G-1} \sum_{j=o}^{G-1} (i+j-\mu_x-\mu_y)^4 p(i,j) = \sum_{i=0}^{G-1} \sum_{j=o}^{G-1} (i+j-2\mu_x)^4 p(i,j)$	
15	Maximum probability	MAP	$\max(p(i,j))$	
16	Relative minimum pixel intensity	IMIN	min(J(x,y)) / mean((J(x,y))	
17	Relative maximum pixel intensity	IMAX	max(J(x,y)) / mean((J(x,y))	
18	Mean value of pixel intensity	IMEA	mean((J(x,y))	

 $[\]overline{\ }^{(1)}$ J(x, y) is a 12-bit image before normalization, I(z, y) is the associated normalized 8-bit image as the input image for calculation of GLCM p(i, j). In addition, the following functions are used in the above definitions with i or j = 0,1,2,...,G-1 and G as the number of gray levels. G=255 for 8-bit gray level images I(x, y):

gray levels. G=255 for 8-bit gray level images
$$I(x, y)$$
:
$$p_x(i) = \sum_{j=0}^{G-1} p(i, j), p_y(j) = \sum_{i=0}^{G-1} p(i, j), p_{x+y}(k) = \sum_{i=0}^{G-1} \sum_{j=0}^{G-1} p(i, j), p_{x-y}(k) = \sum_{i=0}^{G-1} p$$

$$\mu_{x} = \sum_{i=0}^{G-1} i p_{x}(i), \sigma_{x}^{2} = \sum_{i=0}^{G-1} (p_{x}(i) - \mu_{x})^{2}, \mu_{y} = \sum_{j=0}^{G-1} j p_{y}(j), \sigma_{y}^{2} = \sum_{j=0}^{G-1} (p_{y}(j) - \mu_{y})^{2}.$$