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Abstract

Development of label-free methods for

accurate classification of cells with high

throughput can yield powerful tools for

biological research and clinical applica-

tions. We have developed a deep neural

network of DINet for extracting features

from cross-polarized diffraction image

(p-DI) pairs on multiple pixel scales to

accurately classify cells in five types. A

total of 6185 cells were measured by a polarization diffraction imaging flow

cytometry (p-DIFC) method followed by cell classification with DINet on p-DI

data. The averaged value and SD of classification accuracy were found to be

98.9% ± 1.00% on test data sets for 5-fold training and test. The invariance of

DINet to image translation, rotation, and blurring has been verified with an

expanded p-DI data set. To study feature-based classification by DINet, two

sets of correctly and incorrectly classified cells were selected and compared for

each of two prostate cell types. It has been found that the signature features of

large dissimilarities between p-DI data of correctly and incorrectly classified

cell sets increase markedly from convolutional layers 1 and 2 to layers 3 and

4. These results clearly demonstrate the importance of high-order correlations

extracted at the deep layers for accurate cell classification.
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1 | INTRODUCTION

Rapid classification of cells according to their phenotypes
and/or pathologic conditions is a significant and long-
standing problem [1]. While genomic analysis offers the
gold standard [2], accurate and cost-effective methods at
the single-cell level are highly valuable and attract
intense research efforts [3]. Conventional methods of
microscopy and flow cytometry are current tools of

choice, but the former requires time-consuming manual
analysis and the latter yields very limited morphology
information. Furthermore, both need cell staining by
often multiple fluorescent reagents [4]. Besides the bur-
dens of labor intensive preparation and cost, these
reagents can disturb cellular functions to be investigated
to the extent of cell toxicity and exhibit inconsistency in
molecular marking due to inherent variations in affinity
and brightness for quantifying molecules of interest [5, 6].
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Unlike fluorescence, light scattered elastically by a
cell under laser illumination is coherent and forms dif-
fraction patterns in far field given by the spatial distribu-
tion of intensity I(k) with k as the wave vector. Since I(k)
arises from the heterogeneous distribution of refractive
index (RI) n(r) at an intracellular position r, imaging of I
(k) thus opens up the possibilities for morphology-based
and label-free cell assay. Determination of intracellular
phase distribution or reconstruction of n(r) can be
achieved with images of I(k) acquired over a sufficiently
large angular range of k with or without time-stretch
technique [7–11]. It should be noted that I(k) needs to be
oversampled relative to the Nyquist limit, with image
number proportional inversely to the sub-cellular organ-
elle sizes, to avoid pitfalls such as non-convergence and
non-uniqueness in phase unwrapping and subsequent
determination of n(r). The requirements of multi-shot
and oversampled image acquisition adds to the high com-
putation costs of reconstruction from the measured data
and make it unsuitable for rapid classification of cells in
large numbers. On the other end of speed range, time-
stretch ultrashort laser pulses of wide bandwidth are
expanded spatially into lines by grating. With multiple
pules at a high repetition rate projected on a moving cell,
the interferograms obtained with these probing pulses
are picked up by a fast photodetector to form a phase
image of the cell. While the time-stretch technique
affords fast imaging of moving cells, the phase images are
of low resolution because of the limitation of pulse band-
width for spectral expansion and repetition rate relative
to the cell moving speed [12]. Furthermore, in either case
of n(r) reconstruction and phase imaging, the acquired
data are similar to those microscopy images formed by
noncoherent light that require complex segmentation of
intracellular organelles to extract morphological features.
Despite rapid advances in machine learning, segmenta-
tion presents significant challenges for full automation.

We have developed a single-shot approach to image
I(k) over a limited angular range along the side scattering
directions. It is clear that the acquired images are insuffi-
cient for reconstruction of n(r). However, they yield truly
big data for rapid assay of single cells and led to a polari-
zation diffraction imaging flow cytometry (p-DIFC)
method [13–19]. By flowing single cells through the focus
of a linearly polarized laser beam, one pair of cross-
polarized diffraction images (p-DI) is acquired per cell by
an imaging unit with a microscope objective. Since the
diffraction patterns embedded in the p-DI data correlate
strongly with n(r) of an imaged cell, the p-DIFC method
offers a rapid and cost-effective approach to pursue mor-
phology based single-cell assay, which needs no fluores-
cent staining and image segmentation. Indeed, we have
shown that texture parameters extracted from p-DIs as

dark-field images can be used to accurately distinguish
two cell lines or types at a time, which include Jurkat ver-
sus Ramos cells derived from human T and B cancer cells
and other cell types [17–20].

Our previous methods for cell classifications with p-
DI data are based on parameter analysis that consist of
two steps. The input images were first processed by an
algorithm for extraction of texture parameters followed
by a classifier operating in the parameter space. Different
algorithms have been explored for extracting image tex-
ture parameters, which include gray level co-occurrence
matrix (GLCM), short-time Fourier transform, contourlet
and Gabor transforms [18, 20–24]. Despite the variations
in effectiveness for classification of cells in two types, the
parameter based approach requires labor intensive
assessment and validation. More importantly, the
extracted p-DI parameters show mixed sensitivity to tex-
ture types in classification of multiple cell types that lead
to fluctuations in accuracy due to inability to characterize
textures on multiple pixel scales [19, 24]. To take the
advantages of the big data nature of p-DIs, it is necessary
to develop algorithms that can learn features of different
pixel scales from the input image data for improvement
of classification accuracy. Achieving this goal should
markedly enhance the robustness of cell assay with p-DI
data and reduce cost of algorithm development. In this
study, we have investigated various designs of con-
volutional neural networks (CNNs) for classifying cul-
tured cells in five types derived from human white blood
and epithelial cells. The process of feature extraction by
an optimized architect, termed as DINet, has been quan-
titatively analyzed to gain insight on the feature transfer
through the layers. Our results show that the DINet
architect can quantify high-order correlations in the p-DI
data for accurate cell classification.

2 | METHODS

2.1 | Cell sample preparation and
confocal imaging

Five types of cultured human cells were purchased from
ATCC (Manassas, VA) that include four cancer cell lines
of Jurkat, Ramos, PC3, MCF-7 and a normal prostate epi-
thelial cell type of PCS (PCS440010, ATCC). The Jurkat
and Ramos cell lines are suspension cells derived from T
and B lymphocytes while the PC3, MCF-7, and PCS are
adherent epithelial cells derived respectively from
patients of prostate cancer, breast cancer, and from nor-
mal human prostate tissues. The cell lines were
maintained in RPMI-1640 (Gibco, ThermoFisher) sup-
plemented with 10% fetal calf serum maintained while
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PCS cells were in the prostate epithelial cell basal
medium (PCS440030, ATCC) supplemented with the
prostate epithelial cell growth kit (PCS440040, ATCC).
All suspended cell samples were prepared during the log-
arithmic phases of cell growth and adherent cells were
detached with the trypsin–EDTA solution. Cell viability
of each sample was assessed by trypan blue exclusion
tests with percentages of viable cells found to range from
95% to 98%. Cell concentrations were adjusted to values
between 1 × 106 and 2 × 106 cells/mL for p-DIFC mea-
surement and all samples were kept on ice before confo-
cal and diffraction imaging. For each cell type, small
portions of the cell suspensions were doubly stained with
Syto-61 (S11343, ThermoFisher) for nucleus and
MitoTracker Orange (M-7510, ThermoFisher) for mito-
chondria. Confocal image stacks were acquired using a
laser scanning confocal microscope (LSM 510 or
700, Zeiss) followed by 3D reconstruction and quantita-
tive measurement of morphologic parameters [17, 18,
25, 26].

2.2 | Diffraction imaging flow cytometry

Optical and fluidic designs of the p-DIFC system have
been described in details elsewhere [15, 17, 18]. Briefly,
cell suspension was injected into the square channel of a
flow chamber from a nozzle as the core fluid and hydro-
dynamically focused by a sheath fluid. A continuous-
wave solid state laser (MGL-III-532 nm-100 mW, CNI
Optoelectronics Tech. Co.) was used to produce an inci-
dent beam of 532 nm in wavelength. As shown in
Figure 1, the linearly polarized laser beam was focused
on the core fluid with a spot size of about 30 μm at about

1 mm from the nozzle tip. The power and polarization
direction of the incident beam were adjusted with two
half-wave plates and a polarizing beam splitter. An imag-
ing unit collects the coherent light I(k) scattered by a cell
with an infinity-corrected 50x objective of 0.55 in NA
(378-805-3, Mitutoyo). The angular cone for measure-
ment of I(k) has its center axis along the side scattering
direction of 90o from the incident beam direction k0. The
scattered light collected by the objective was divided into
two beams of s- and p-polarizations and focused by two
tube lenses on cameras for acquisition of one p-DI pair.
The imaging unit consisting of the objective, an interfer-
ence filter centered at 532 nm with width of 10 nm, a
polarizing beam splitter, two tube lenses and cameras
was translated as a whole toward the flow chamber by an
off-focus distance of Δx from the position conjugate to
the imaged cell. It has been shown that nonconjugate
imaging of the coherent light with Δx > 0 for moving
toward the chamber allows adjusting the cone angle of
scattered light collected by the imaging unit to optimize
image contrast [14, 27]. We set Δx = 100 μm for p-DI
measurement from smaller white blood cells of Jurkat
and Ramos derived from human lymphocytes and Δx
=150 μm for p-DI from larger epithelial cells of PC3,
PCS, and MCF-7. The change of Δx from 100 to 150 μm
corresponds to variation of the half-cone angle for
scattered light collection by the imaging unit from 23.76o

to 23.27o [27]. The flow speed of cell through the incident
beam was set at about 4 mm/s and exposure time of the
CCD cameras at 1 ms.

2.3 | Data preparation and CNN training

In p-DIFC measurement, light scattering occurs only
during the time of a cell moving across the focus of the
incident laser beam. Thus, the acquired p-DI pairs are
dark-field images of single cells with 12-bit pixel depth
and little background. After data acquisition, the over-
exposed and underexposed images were removed automat-
ically followed by manual prescreening, which eliminated
the p-DIs due to cell debris and aggregated homogeneous
particles based on their significantly different image pat-
terns from those of intact cells [16]. Each 12-bit image in a
p-DI pair of single cells was normalized by its minimum
and maximum pixel intensities, and the two cross-
polarized images were saved into one false-color image of
8-bit pixels in two channels as a combined DI for reducing
data sizes. The measured set of combined DIs were mixed
among the five cell types and divided into five groups as
listed in Table 1 to form training and test data sets. All
CNN classifiers were investigated with a 5-fold cross-
validation scheme in which network training and test were

FIGURE 1 Schematic of a p-DIFC system: L, laser; WP, half-

wave plate; PBS, polarizing beam splitter; M, mirror; FL, focusing

lens; FC, flow chamber; CF, core fluid; SF, sheath fluid; T, trap;

OBJ, objective; TL, tube lens. The magnified view of one

reconstructed PC3 cell has its nucleus colored in purple and

mitochondria in green
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repeated five times by rotating one group of p-DI data as
the held-out test data set and the rest as the training-
validation data set. Each round started with the training-
validation data set and ended after 250 epochs to classify
the test data set. The data sets of training and validation
were formed by a 9:1 ratio and a batch size of 256 com-
bined DIs was used for training. In addition, we have
obtained an expanded set of combined DIs to test invari-
ance of an investigated network architect to pixel transla-
tion, rotation, and blurring. Each combined DI listed in
Table 1 underwent three consecutive transforms of hori-
zontal translation by 64 pixels, vertical flipping and pixel
smoothing by a 5 × 5 window to form the expanded set.
Thus, the expanded set was made of the same five groups
with 8-fold increases in image numbers.

TensorFlow was employed as the platform with the
python library of TFlearn for construction and optimiza-
tion of CNNs [28]. Training and test of all investigated
networks were performed on one GPU card (Tesla K40,
Nvidia) in a high-performance computing cluster node at
the Institute for Advanced Optics. Different configura-
tions of convolutional and fully connected (FC) layers,
connected by pooling layers, have been evaluated with
the combined DIs listed in Table 1 to optimize perfor-
mance. An optimized CNN classifier has been obtained
as DINet that produced excellent classification perfor-
mance with training times of 250-epoch at about
25 minutes. Once trained, DINet took only about
5 seconds on one CPU (Xeon E5-2630, Intel) to complete

classification of 1237 combined DIs in group 1. Figure 2
presents the architecture of DINet.

Cascading feature extraction in DINet is handled by
convolutional layers of Cm with m = 1, …, 4. Each layer
outputs a 3D array of elements ym(i, j, d) from its input
array of elements xm(i, j, d) by

ym i, j,dð Þ= f xm i, j,dð Þð Þ= f wm dð Þ�pm−1 + bm dð Þð Þ ð1Þ

where 1 ≤ i, j, d ≤ Nmi, Nmj, Nmd, respectively, with Nmi,
Nmj, and Nmd as the element numbers of each dimension
for arrays of xm and ym, f is the activation function given
by rectified linear unit (ReLU) [29], pm-1 denotes the 3D
input array in the previous pooling layer as seen by
ym(i, j, d), wm(d) is the 3D convolution feature map
by weight parameters and bm(d) is the bias. The con-
volutional stride was set to two for C1 and one for C2 to
C4. With shared elements for wm(d), DINet needs only
to optimize 2.5 × 104 weight parameters for marked
decrease in training time with robust performance.

For each round of CNN classifier training and test,
we adopted the following definition of the classification
accuracy Ai for cell type i with i = 1, …, 5 [30].

Ai =
TPi +TNi

TPi +TNi + FPi + FNi
ð2Þ

where TPi is the number of combined DIs labeled as ith
cell type and are correctly classified as ith type, TNi is the
number labeled as one of other types and are correctly

TABLE 1 Groups of combined DIsCell type NDI
a Group 1 Group 2 Group 3 Group 4 Group 5

Jurkat 1504 291 304 301 312 296

Ramos 1179 234 239 233 239 234

PC3 1071 211 224 218 201 217

PCS 1138 235 207 236 223 237

MCF-7 1293 266 263 249 262 253

Total 6185 1237 1237 1237 1237 1237

aNDI = number of combined DIs or cells in the measured set.

FIGURE 2 The dataflow graph of DINet with eight layers of convolution and pooling before the FC layer. Each layer has its element

numbers of each dimension shown on top as Nmi, Nmj, Nmd, and receptive field size/stride at bottom. The blue numbers are for

convolutional layers and black for other layers
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classified as that type, FPi is the number labeled as one of
other types and are incorrectly classified as ith type and FNi

is the number labeled as ith type and are incorrectly classi-
fied as other types. The averaged and standard deviation
values of Ai over the five cell types were obtained as Aav and
Astd, respectively. After training, the classifier was tested on
the held-out group to obtain Aav and Astd and their mean
values were determined as μA and σA respectively to assess
the classifier's performance on five test data sets.

3 | RESULTS

3.1 | Imaging measurement of five cell
types

Both confocal fluorescence and diffraction imaging were
carried out on suspended cell samples. The former was
performed with double fluorescence staining of nucleus
and mitochondria, which typically took up to 2 minutes to
complete one stack of confocal images with one to five
cells in a field of view of about 35 μm. Figure 3A presents
confocal images of two cells per type selected near the mid-
dle of respective image stacks of about 40 to 70 slices per
stack. A software has been developed for reconstruction of

3D cell structures and determination of morphology
parameters for cells of each type [25, 26]. The p-DI data
were acquired from single cells carried by the core fluid
and excited by a vertically polarized laser beam of 532 nm
in wavelength. The throughput rate was about one cell/s
that was limited by the speeds of cameras and data trans-
mission of the experimental system.

Each acquired p-DI pair consists of two cross-
polarized images of 640 × 480 pixels. For vertically polar-
ized incident beam, the s-polarized scattered light is
much stronger than the p-polarized component as shown
in Figure 3B by the average pixel intensity values. It
should be noted that the linear depolarization ratio δL is
given by the averaged 12-bit pixel value ratio of p- and s-
polarized diffraction images. We have shown that δL can
be used for cell classification for its dependence on the
types and distributions of molecular dipoles [23]. For this
study, however, we import only the combined DIs into a
CNN classifier without δL. This allows us to examine the
effectiveness of diffraction patterns alone for cell classifi-
cation. Figure 4 presents the combined DIs acquired from
single cells for each type. While pattern differences
among the five cell types are visible, it is important to
establish an objective approach of p-DI analysis for cell
classification by machine learning.

FIGURE 3 A, Fluorescence confocal image slices of two cells per type with nuclear fluorescence saved in red and mitochondrial

fluorescence saved in green channels; B, one normalized p-DI pair and combined DI in false colors from one PC3 cell. The labels indicate

cell type, scattered light polarization, maximum, average, and minimum 12-bit pixel values
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3.2 | DINet Training and classification
results

Our investigation of CNN architects was inspired by the
widely known structure of AlexNet that has five con-
volutional layers and three fully connected (FC) layers
with 6.2 × 107 network parameters for optimization [29].
While high classification accuracy can be achieved, Ale-
xNet takes long time to train due to the large number of
network parameters. More importantly, its depth and
high dimensionality in weight parameters makes it chal-
lenging to quantitatively analyze the cascading process of
feature extraction. To accelerate training and improve
understanding of the feature extraction process, we have
developed DINet with 100-fold less weight parameters for
improved robustness and reduced computation cost.

Training of CNNs with different architects and learn-
ing rate η was performed in batch mode. The best perfor-
mance was achieved with DINet and η set at 0.01. We

have also examined the possibility of overfitting by vary-
ing value of dropout r from 100% to 30% over the
250-epoch training processes. Typical results of the mean
cross-entropy loss L and accuracy Aav obtained with the
validation data are shown in Figure S1 file. The L and
Aav curves of different r values in Figure S1 exhibit little
changes after epoch 80 and indicate negligible overfitting.

The classification accuracy of five cell types by DINet
in terms of Aav ± Astd were found to range from 98.7% ±
1.09% for group 5 to 99.2% ± 0.89% for group 1. The aver-
age training time for the five-round rotation is about
25 minutes. Figure 5A shows three confusion matrices of
classification results by the DINet. Training and test were
repeated with the expanded set of combined DIs to test the
invariance of DINet to pixel translation, rotation, and
blurring. The confusion matrices and classification accura-
cies of selected test data sets are presented in Figure 5B.
Confusion matrices of all five groups in Table 1 used as test
data sets and those of the expanded set are provided in

FIGURE 4 False-color combined DIs from five cells for each type with green and red colors representing, respectively the normalized

intensity of s- and p-polarized scattered light
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Figure S2 file. It is clear from these results that the pixel-
based CNN classification yielded a very robust method of
cell classification by combined DIs.

3.3 | Hierarchical representation of DI
features

To gain insight on discriminative representation of input
images across multiple pixel scales, we analyzed the out-
puts of each layer Cm in the optimized DINet. For each
cell type, two sets of combined DIs of were selected from
a test data set as correctly and incorrectly classified DIs.
The 3D output array ym of Cm layer as defined in Equa-
tion (1) was exported for cell c of the selected DI as a 2D
feature image stack {Ymdc: d = 1, …, Nmd} in which
Ymdc(i, j) was obtained from ym(i, j, d; c). Six histogram
parameters Φmd(c, p) were calculated from Ymdc(i, j) with
p (=1, …, 6) as the parameter index. Then Φmd,av(p) was
obtained from Φmd(c, p) as the mean values of all cells in
a selected DI set. Finally, the relative difference between
Φmd,av(p) of the two sets was determined as Δmd(p) to
quantify the averaged difference in parameter p for layer
Cm between the correctly and incorrectly classified cells.
For this study, we focus only on the parameters with sig-
nificant difference or |Δmd(p)| ≥ 60% as the “signature
features” to reduce the effect of image noise. Five of six
histogram parameters were found to satisfy this criterion,

which are the mean gray-level μ, variance σ2, entropy s,
skewness γ1, and kurtosis γ2 with γ2 exhibiting the
highest values of |Δmd(p)|. The histogram parameter lac-
king significant difference is energy ε. Parameter defini-
tions and details of calculating signature features from
ym are given in the Supporting Information file.

For quantifying variation of signature features among
different layers, we calculated nm(p) as the number of 2D
feature images having p with |Δmd(p)| ≥ 60% among the
Nmd images of layer Cm and |Δm,av(p)| as the averaged
values over the nm(p) images. The results for PC3 and
PCS cells are presented in Figure 6 since they have suffi-
ciently large numbers of incorrectly classified cells in the
measured DIs among the five cell types. Study of the dif-
ferences of histogram parameters between the 2D feature
images of the two selected cell sets allows us to under-
stand the hierarchical representation and selection of dif-
fraction pattern features through the four convolutional
layers in DINet's prediction for cell type.

Figure 6 shows that the values of nm(p) and |Δmd(p)|
for γ2 increase markedly from C2 to C3 whereas the
increases from C1 to C2 or from C3 to C4 are much less
for both types of PC3 and PCS. These results indicate an
important role in cell classification by γ2 which charac-
terizes the “peak-tail distribution” of histogram in the
feature images of Ymdc(i, j). Furthermore, the ability of C3

to extract large number of feature images with high
values of |Δm,av(γ2)| suggests that three convolution

FIGURE 5 A, Confusion matrices obtained with test data set of groups 1, 3, and 5 of the measured set of combined DIs with rows as

ground truth types and columns as predicted types. Blue squares indicate zero elements. The values of Aav ± Astd were given by 99.2%

± 0.89% for group 1, 99.2% ± 0.68% for group 3 and 98.7% ± 1.09% for Group 5. B, Similar results obtained with the eight times expanded set

of combined DIs and corresponding values of Aav ± Astd given by 99.0% ± 1.07%, 99.1% ± 0.74% and 99.3% ± 0.68%
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layers may be sufficient for accurate classification by
these signature features. To test this hypothesis, we modi-
fied the DINet by elimination of C4 and P4 layers and

connecting the P3 layer directly to the FC layer. The
reduced DINet was then optimized into two different net-
works: DINet-A with only the network parameters after

FIGURE 6 Number ratio nm(p)/Nmd and averaged difference |Δm,av(p)| of 2D feature images with signature features by histogram

parameter p determined from ym(i, j, d; c) versus layer Cm for PC3 (upper) and PCS (lower) cells. Histogram parameter of μ, σ2, s, γ1, and γ2
for different values of p are defined in Appendix S1

FIGURE 7 Confusion matrices obtained with, A, DINet-A and, B, DINet-B similar to those in Figure 5. The values of Aav ± Astd of

groups 1, 3, and 5 were given, respectively as (A) 98.6% ± 1.36%, 99.0% ± 0.76%, and 98.7% ± 1.24%; (B) 98.7% ± 1.27%, 99.1% ± 0.76%, and

99.0% ± 0.81%
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the P3 layer re-trained and DINet-B with all network
parameters retrained. Figure 7 shows the confusion matri-
ces of these two modified networks, which demonstrate
clearly the little impact of layer C4 on classification accu-
racy. However, the training time of DINet-B was found to
be about the same as the DINet. For increased robustness,
we keep the DINet as our choice of CNN for this study.

4 | DISCUSSION

The process of translating genotype to phenotype in cell
differentiation is complex and pathway dependent [31].
Cells of the same phenotype can exhibit substantial het-
erogeneity in their morphology and one usually prefers
immunofluorescent measurement over analysis of mor-
phology alone for cell classification. It thus remains to be
answered whether single-shot images of scattered light
intensity I(k) under coherent excitation can be applied
for rapid and accurate classification of cells in multiple
types. Here we have demonstrated the feasibility of the p-
DIFC approach to achieve such a goal by cross-polarized
recording of I(k) over a limited angular range along the
side scattering directions. The results presented in this
report show the key role of deep networks for learning
and extracting signature features from the input p-DI
data by its multilayer architect. For comparison, we have
classified the same set of p-DI data used for DINet devel-
opment by a clustering algorithm in the GLCM parame-
ter space. A Gaussian mixture model was combined with
the hierarchical clustering algorithm to obtain stable
clustering results [24]. Thirty GLCM parameters were
extracted from each p-DI pair to quantify the second
order correlations among the image pixels [18]. Different
combination of the GLCM parameters were investigated
for classification of the cells in five types and the classifi-
cation accuracies were mostly below 90% with the best
value of Aav ± Astd found to be 91.3% ± 7.62%, which are
significantly lower than those by DINet due to much
increased cross-over errors between Ramos and PCS and
misclassifying MCF-7 into PC3.

Convolution of two functions as defined in Equa-
tion (1) is equivalent to their cross-correlation by coordi-
nate reversal. Consequently, the multilayer structure of
CNN classifiers provides a powerful means to quantify
different orders of statistical relations among the pixel
intensities of an input image. We note that wm(d) as fea-
ture maps serve as “adaptive sieves” to screen useful local
patterns of the input image for object classification. After
optimization, these maps can be regarded as an adapted
convolutional operator on the output of previous layer
and generate the feature images in ym. For combined DIs
concerned in this report, the diffraction patterns exhibit

the angular distribution of the coherent light intensity
I(k) scattered by a cell. One can argue that convolutional
layers present features closely related to the correlations
of I(k) with the optimized wm(d) in succeeding orders as
m increases from 1 to 4. DINet can thus yield much
improved performance due to its ability to extract high-
order correlation features from the combined DIs, which
is entirely different from the conventional image analysis
algorithms like the GLCM method. Indeed, the results in
Figure 6 present strong evidences that the high-order cor-
relations revealed by γ2 of {Ymdc: d = 1, …, Nmd} in the
deep layers of C3 and C4 are essential for the excellent
performance of DINet. In comparison, the lower-order
correlations revealed by the shallow layers of C1 and C2

do not provide sufficient signature features for accurate
classification. The analysis of layers' output arrays pres-
ented here thus provides a practical approach to explore
quantitatively the effect of network depth on pattern rec-
ognition [32].

5 | CONCLUSION

We have developed a compact deep neural network for
classifying five cultured cells types by extracting diffrac-
tion pattern features from p-DI data. It has been shown
that the unique ability of deep network to learn and
extract high order correlation among the input image
pixels is critical for accurate cell classification. These
results demonstrate the strong potentials of accurate and
rapid cell classification by the p-DIFC method with
single-shot diffraction images combined with deep neural
networks.
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