










For SVM classification with the 3-D parameters, the single
parameters with highest Aav ¼ 71.7% for the training data set
are the cell’s equivalent spherical radius (ERc) using the kernel
functions of the polynomial or RBF. The corresponding

parameter for a sigmoid kernel function is the nucleus to
cell volume ratio (Vrnc) with Aav ¼ 68.3% and cell volume
(Vc) for linear with Aav ¼ 71.7%. SVM models obtained by
including additional 3-D parameters (Nm > 1) according to

Fig. 4 Examples of normalized 8-bit cross-polarized image pairs of two PC3 and two PCS cells acquired
in measurement #1 for each incident beam polarization with white for pixel intensity 255 and black for 0.
Each image is labeled with the cell type, polarization of the incident beam, polarization of the scattered
light, and maximum, average, and minimum pixel intensities of the acquired 12-bit images.

Fig. 5 Scatter plots of N tot imaged cells with the average pixel intensity of the acquired s-polarized (s-Iav)
versus that of the p-polarized diffraction image (p-Iav) acquired in measurement #1 with different incident
beam polarizations: (a) vertical or s-polarized with N tot ¼ 716 for PC3 cells and N tot ¼ 668 for PCS cells;
(b) horizontal or p-polarized with N tot ¼ 681 for PC3 cells and N tot ¼ 623 for PCS cells; (c) 45 deg with
N tot ¼ 770 for PC3 cells andN tot ¼ 378 for PCS cells. The values of incident beam power P0 are labeled.
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their ranks have been found to produce slightly larger or
smaller values of Aav in comparison to the single parameter
model with the top-ranked one. The performance results of
SVM models with Nm up to 10 are presented in Fig. 6 with

different kernel functions for both training and test data sets.
It is obvious that 3-D morphology parameters extracted
from confocal image stacks of cells with stained nucleus
and mitochondria do not yield accurate markers for

Table 2 Experimental parameters and classification results with diffraction images.

Measurement
group

Incident
polarization

Cell
type N tot

a N tra
a N tes

a

Aav (%)
M and kernel function of

best SVM modelbTraining Test

#1 Vertical PC3 716 500 216 99.1 97.1 10
and linearPCS 668 500 168

Horizontal PC3 681 500 181 93.7 84.5 10
and polynomialPCS 623 500 123

45 deg PC3 770 300 470 80.7 64.8 10
and polynomialPCS 378 300 78

#2 Vertical PC3 998 800 198 76.9 74.8 13
and polynomialPCS 1393 800 593

Horizontal PC3 890 400 490 100 100 6
and linearPCS 578 400 178

45 deg PC3 897 600 297 76.3 78.2 5
and RBFPCS 758 600 158

#3 Vertical PC3 1130 800 330 93.5 93.0 9
and linearPCS 1006 800 206

Horizontal PC3 1104 800 304 99.5 99.5 14
and polynomialPCS 1337 800 537

45 deg PC3 1137 800 337 86.0 89.0 1
and linearPCS 1092 800 292

All data groups
combined

Vertical PC3 2844 2100 744 88.3 87.8 14
and polynomialPCS 3067 2100 967

Horizontal PC3 2675 1700 975 80.1 75.4 8
and polynomialPCS 2538 1700 838

45 deg PC3 2804 1700 1104 73.4 79.2 13
and polynomialPCS 2228 1700 528

aN tot = number of diffraction image pairs of viable cells for extraction of 38 image parameters;N tra = number of diffraction image pairs in the training
data set; N tes ¼ N tot − N tra = number of diffraction image pairs in the test data set.

bM = number of image parameters used in the best SVM model for classification.

Fig. 6 Averaged accuracy Aav versus the maximum number of 3-D parameters Nm used for SVM clas-
sification with four different kernel functions for: (a) training data set and (b) test data set. The lines are for
visual guide.
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classification of the two prostate cell types, which is consistent
with the data shown in Fig. 3.

To investigate classification with the p-DIFC image param-
eters, an SVM model was first optimized with the training data
set. Table 2 includes the values of Aav, Nm, and kernel functions
of the best SVM models established for the diffraction image
pair data acquired with three different incident beam polariza-
tions in three measurements. One can clearly see that the p-
DIFC parameters provide a much improved performance in
comparison to the 3-D parameter for classifying the two prostate
cell types. However, Aav decreases significantly if we combine
all data from the three measurements together as shown by the
bottom section of Table 2. Similar decreases were observed by
applying the best SVM model trained by the data of one meas-
urement to the data of different measurements (not shown).

To demonstrate the effectiveness of the SVM algorithm with
the p-DIFC image parameters, scatter plots of the training results
are presented in Fig. 7 for three cases of cell classification with
the best SVM model in each case on data acquired in the same
measurement. The data show clearly that the SVM algorithm
provides a powerful tool to improve cell classification with
extracted image parameters by mapping them from the param-
eter space Σp into the feature space E using a kernel function. In
the case of Fig. 5(a), the top two ranked single GLCM param-
eters of dissimilarity and sum average22 extracted from p-polar-
ized images yield, respectively, classification accuracies Aav of
91.0% and 87.7% for the training data. These values of Aav with
single parameter values are significantly smaller than the

accuracy of 99.1% that can be achieved with the best SVM
model of Nm ¼ 10 parameters and the linear kernel function.
A similar improvement in classification can be observed in
the other two cases: the values of Aav were found to increase,
respectively, from 77.9% for s-IDM and 74.4% for s-DIS alone
to 93.5% with Nm ¼ 9 and a linear kernel function in the case of
Fig. 5(b) and from 61.3% for s-DIS and 61.2% for s-DEN alone
to 91.3% with M ¼ 10 and a polynomial kernel function in the
case of Fig. 5(c). The GLCM parameters extracted from the nor-
malized diffraction image pairs are available online for readers
to investigate other classification methods.26

4 Discussion
Accurate classification of biological cells of the same tissue of
origin is fundamentally challenging and also of practical interest
in clinical applications, such as detection of CTCs.27 In this
report, we focus on the feasibility of diffraction imaging for
accurate classification of the prostate epithelial cells of PC3
and PCS by comparison to the conventional morphology meas-
urement through confocal imaging. Despite the statistically sig-
nificant differences in the cell and nuclear volumes and other
parameters as indicated by the p-values smaller than 0.05 in
Table 1, the scatter plots of the imaged cells by these parameters
in Fig. 3 and the SVM classification results in Fig. 6 show
clearly that the 3-D parameters alone cannot yield accurate
markers for classification, which stands in stark contrast to
the use of arrangement patterns of the carcinoma cells in a

Fig. 7 Scatter plots of training data with values of decision function F versus the top two ranked p-DIFC
image parameters used by the best SVM model established for: (a) data acquired in measurement #1
with vertical incident beam polarization and N tra ¼ 500 for each of the two cell types, p-DIS: dissimilarity
of p-polarized images, p-SAV: sum average of p-polarized images; (b) data acquired in measurement #3
with vertical incident beam polarization and withN tra ¼ 800, s-IDM: inverse difference moment of s-polar-
ized images; (c) same as (b) except with horizontal polarization, s-DEN: difference entropy of s-polarized
images. The cells with F > 0 (above the line of F ¼ 0) are classified by the SVM model as PC3 cells and
those with F < 0 (below the line) as PCS cells. The values of TP, FN, TN, FP,Nm , kernel function, andAav
of the best SVM model are labeled.
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stained tissue section as a part of the evidence for prostate cancer
staging.28

With the p-DIFC method, we have shown that detection of
the diffraction patterns of the coherent light scattered by single
cells through polarization diffraction imaging can provide an
accurate and effective approach to classify the two cell types
for data acquired in the same measurement. By imaging the
coherent side scatter, the diffraction image parameters ci
obtained with an optimized SVM model can serve as the mor-
phology-related “fingerprints” of the cell i impressed by the
coherent electromagnetic wavefields of the incident laser
beam. Even though the fingerprints as a result of diffraction
have been known to correlate strongly with cell morphology,
they are formed through the complex interaction of the incident
wavefields with the molecules inside the illuminated cell.
Because of the unknown intracellular distribution refractive
index, the detailed relations remain to be investigated between
ci extracted from a pair of 2-D cross-polarized diffraction
images and the cell’s 3-D morphology. Still the results presented
here provide strong evidence that the p-DIFC method has the
capacity to establish an empirical approach for accurate classi-
fication of normal and cancerous human prostate epithelial cells.
With the powerful data mining tools like the SVM algorithm, the
diffraction image data can be used to construct a high-dimension
feature space E defined by the training data and a kernel func-
tion for significantly improved classification as shown by the
results in Fig. 7. From the last part of Table 2, it is also clear
that the diffraction images or their texture parameters are sen-
sitive to the positioning of the flowing cell relative to the focused
incident beam and the imaging unit on the scales of 10 μm.
Since these positionings could not be accurately controlled
with the current experimental system, the SVM model has to
be retrained between measurements to achieve accurate classi-
fication. System improvement is underway to use two laser
beams and forward scatter signals and improve the positioning
of the cells carried by the core fluid.

Careful examination of the average pixel intensity data in
Fig. 5 demonstrates that the incident beam polarization mark-
edly affects the detection efficiency of side scatter. The same
sensitivity to the incident polarization can also be observed
in the values of Aav presented in Table 2. These data indicate
clearly that the p-DIFC image parameters could provide “finger-
print” makers carrying rich information on intracellular biomo-
lecules in terms of their ability to polarize in the wavefields of
the incident beam. It is interesting to note further that among the
three polarization directions, cell classification with data
acquired at 45 deg tends to produce smaller values of Aav for
each of the three measurements. Similar results have been
observed in our previous classification study of the Jurkat T-
cell line and Ramos B-cell line derived from cancerous white
blood cells.19 The less ability of the p-DIFC method with a
45-deg polarized incident beam to separate different cell
types of highly similar morphology could be understood by
the following considerations. For the incident beam propagating
along the z-axis with polarization at 45 deg, the intracellular
molecules can have induced dipoles to oscillate along both
the x-axis and the y-axis. The equal probability of induced
molecular dipoles reduces the selectivity of the p-DIFC method
to contrast the differences among cells with different molecular
responses to the incident wavefields. These considerations are
corroborated by a visual inspection of the cross-polarized dif-
fraction images, with limited but randomly selected examples

presented in Fig. 4, in which the two images in each pair
acquired with 45 deg polarization exhibit diffraction patterns
of higher similarity than those acquired with vertical or horizon-
tal polarizations.

5 Conclusion
A classification study of two types of prostate epithelial cells has
been performed, and it has been shown that the cancerous cells
can be accurately distinguished from the normal cells with the
measured cross-polarized diffraction image pair data using the
data acquired in the same measurement. The classification abil-
ity of the label-free p-DIFC method suggests strongly that dif-
fraction imaging senses the molecular differences among the
two different cell types in addition to the morphologic
differences, which have been quantified by confocal imaging
and 3-D reconstruction. The employment of the SVM classifi-
cation algorithm allows significantly improved classification in
comparison with the direct approach in the parameter space
defined by the GLCM parameters. It should be pointed out
that the p-DIFC method remains to be further enhanced in
terms of the acquisition of high-contrast diffraction images at
a faster rate, accurate positioning of the flowing cells, and devel-
opment of superior algorithms for characterization of image tex-
tures with less sensitivity to image noises.
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